SCOL7000 - Bioestatística

Silvia Shimakura

silvia.shimakura@ufpr.br

Página da disciplina:

http://www.leg.ufpr.br/doku.php/disciplinas:scol7000

ESTATÍSTICA DESCRITIVA

- Organização
- Descrição
- Quantificação de variabilidade
- Identificação de valores típicos e atípicos

• Elementos básicos:

- Tabelas
- Gráficos
- Resumos numéricos

DADOS (OU VARIÁVEIS)

 Quantificação ou categorização do fenômeno de interesse

Inquérito	Anic	lemin	UUICU.
IIIqueillo	CPIO		ogico.

Pergunta	Variável
Qual é a sua idade?	Idade
Qual é o número de pessoas na família?	Tamanho da família
Qual é a renda total de sua família?	Renda
Qual é o seu estado civil?	Estado civil
Você tem emprego fixo?	Emprego
Qual é o seu grau de instrução?	Grau de instrução

- Dados de 189 nascimentos num hospital dos EUA
- Principal interesse era em recém nascidos com baixo peso (<2,5kg) e os potenciais fatores associados

id	age	mwt	race	smoke	nprem	hyper	bwt
1	21	200	2	0	0	0	1928
2	16	112		0	0	0	3374
189	26	154	3	0		1	2442

Dicionário das variáveis:

age: idade da mãe (anos)

mwt: peso da mãe (lbs)

race: raça da mãe (1=Branca, 2=Negra, 3=Outra)

smoke: fumo durante a gravidez (0=Não, 1=Sim)

nprem: Número de partos prematuros

hyper: histórico de hipertensão (0=Não, 1=Sim)

- Dados de 189 nascimentos num hospital dos EUA
- Principal interesse era em recém nascidos com baixo peso (<2,5kg) e os potenciais fatores associados

Cada linha contém os dados de 1 registro (1 observação)

id	age	mwt	race	smoke	nprem	hyper	bwt
1	21	200	2	0	0	0	1928
2	16	112		0	0	0	3374
189	26	154	3	0		1	2442

Dicionário das variáveis:

age: idade da mãe (anos)

mwt: peso da mãe (lbs)

race: raça da mãe (1=Branca, 2=Negra, 3=Outra)

smoke: fumo durante a gravidez (0=Não, 1=Sim)

nprem: Número de partos prematuros

hyper: histórico de hipertensão (0=Não, 1=Sim)

- Dados de 189 nascimentos num hospital dos EUA
- Principal interesse era em recém nascidos com baixo peso (<2,5kg) e os potenciais fatores associados

Cada coluna contém os valores de 1 variável (idades em anos das mães)

id	age	mwt	race	smoke	nprem	hyper	bwt
1_	21	200	2	0	0	0	1928
2	16	112		0	0	0	3374
	•••						
189	26	154	3	0		1	2442

Dicionário das variáveis:

age: idade da mãe (anos)

mwt: peso da mãe (lbs)

race: raça da mãe (1=Branca, 2=Negra, 3=Outra)

smoke: fumo durante a gravidez (0=Não, 1=Sim)

nprem: Número de partos prematuros

hyper: histórico de hipertensão (0=Não, 1=Sim)

id

- Dados de 189 nascimentos num hospital dos EUA
- Principal interesse era em recém nascidos com baixo peso (<2,5kg) e os potenciais fatores associados

1	21	200	2	0	0	0	1928
2	16	112		0	0	0	3374
							
189	26	154	3	0		1	2442

smoke

nprem

hyper

Dicionário das variáveis:

age: idade da mãe (anos)

mwt

age

race

mwt: peso da mãe (lbs)

race: raça da mãe (1=Branca, 2=Negra, 3=Outra)

smoke: fumo durante a gravidez (0=Não, 1=Sim)

nprem: Número de partos prematuros

hyper: histórico de hipertensão (0=Não, 1=Sim)

bwt: Peso ao nascer (g)

Dados faltantes!

- Dados de 189 nascimentos num hospital dos EUA
- Principal interesse era em recém nascidos com baixo peso (<2,5kg) e os potenciais fatores associados

- Lendo dados no R:
- > peso=read.table('birthwt.dat',header=TRUE,sep=")

id	age	mwt	race	smoke	nprem	hyper	bwt
1	21	200	2	0	0	0	1928
2	16	112	2	0	0	0	3374
189	26	154	3	0	1	1	2442

Dicionário das variáveis:

age: idade da mãe (anos)

mwt: peso da mãe (lbs)

race: raça da mãe (1=Branca, 2=Negra, 3=Outra)

smoke: fumo durante a gravidez (0=Não, 1=Sim)

nprem: Número de partos prematuros

hyper: histórico de hipertensão (0=Não, 1=Sim)

Banco de dados

- Uma linha para cada indivíduo
- Uma coluna para cada variável observada
- Para variáveis qualitativas:
 - Criar códigos para cada categoria
- Para variáveis contínuas:
 - Entrar com os dados originais e não os codificados para classes de interesse (você pode querer mudar as classes durante a análise)
- Para dados omissos: deixar os campos em branco ou usar código que facilmente identifique esse tipo de dado (Ex: 999 para pressão arterial)

Tipos de Dados

 Facilita o tratamento estatístico classificar dados em: Categóricos e Quantitativos

- Categóricos
 - Nominais Categorias não ordenadas:
 - Emprego
 - Estado civil
 - Ordinais Categorias ordenadas:
 - Grau de instrução
 - Faixa de renda
 - Faixa etária

Tipos de Dados

Quantitativos

- Dados numéricos que podem ser adicionados, subtraídos, multiplicados e divididos
- Discretos podem somente assumir certos valores:
 - Tamanho da família
 - Anos completos de estudo
- Contínuos podem assumir qualquer valor dentro de um intervalo:
 - Idade
 - Renda

Organização e apresentação de dados

- Para uma variável ou cruzamento de variáveis
 - Tabelas de frequências
 - Gráficos

Tabelas de frequências

- Sintetiza os dados
- Consiste na construção de uma tabela a partir dos dados brutos com a frequência de cada observação.
- A partir das tabelas são construídos os gráficos.

Tabela 1: Distribuição das mães de recém nascidos segundo raça

Raça	Frequência absoluta	Frequência relativa
Branca	96	0,51
Negra	26	0,14
Outra	67	0,35
Total	189	1

Obtendo a distribuição de frequencias no R

- > table(peso\$race) #freq absoluta
- > table(peso\$race)/length(peso\$race) #freq relativa

Tabela 2: Distribuição das mães segundo faixa etária

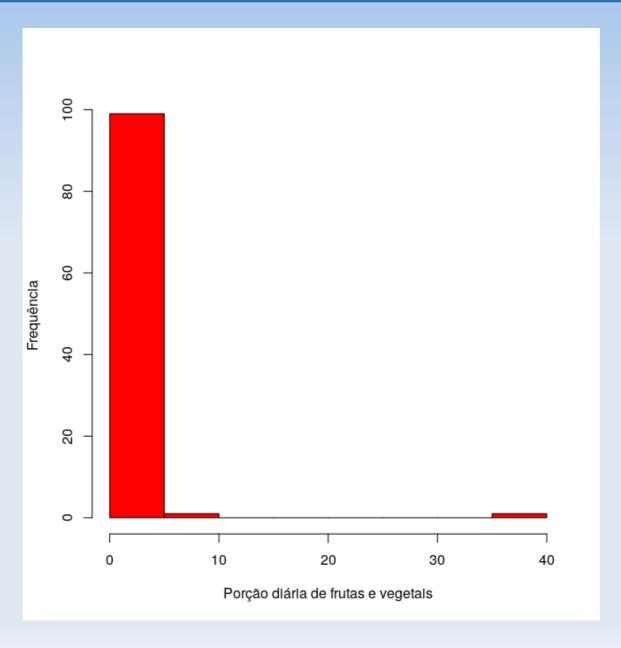
Idade (anos)	Frequência					
	Absoluta	Relativa (%)	Acumulada (%)			
10⊢15	6	3,17	3,17			
15⊢20	63	33,33	36,50			
20⊢25	66	34,92	71,42			
25⊢30	34	17,99	89,41			
30⊢35	17	9,00	98,41			
35⊢40	2	1,06	99,47			
40⊢45	1	0,53	100			
Total	189	100				

Comandos do R:

- > h=hist(peso\$age,xlab='Idade',ylab='Frequência absoluta',main=")
- > h\$counts
- > h\$counts/sum(h\$counts)*100
- > cumsum(round(h\$counts/sum(h\$counts)*100,2))

Etapas para construção de tabelas de frequências para dados agrupados

- 1. Encontrar o menor e o maior valores (mínimo e máximo) do conjunto de dados
- 2. Escolher número de classes (de igual amplitude), que englobem todos os dados sem superposição de intervalos.
- 3. Contar o número de elementos em cada classe (este número é a frequência absoluta)
- 4. Calcular a frequência relativa em cada classe


Visualize seus dados!

- Encontrou "Outliers"?
- Alguns pontos não fazem sentido?
- Como os dados estão distribuídos?
 - Formato
 - Centro
 - Variação

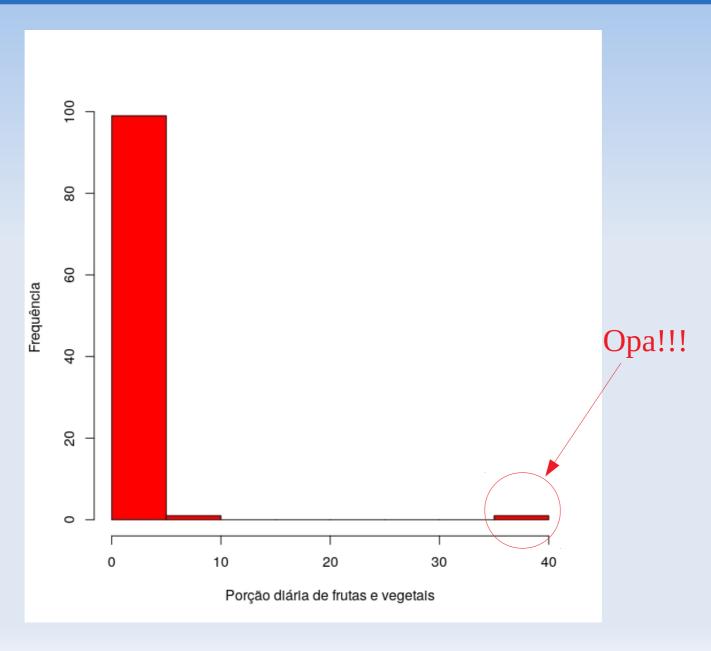


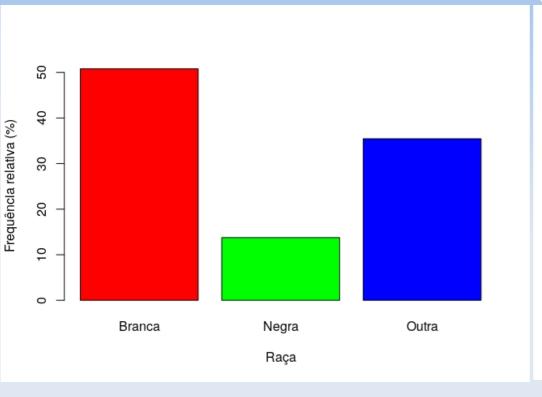
Imagem por GraphicMama-team / Pixabay

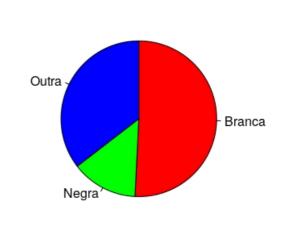
Alguns pontos não fazem sentido?

Alguns pontos não fazem sentido?

Como os dados estão distribuídos?

- Diagrama de barras
- Histograma
- Ogiva
- Boxplot
- Gráfico de linhas
- Diagrama de pontos
- Diagrama de dispersão


Designed by stories / Freepik

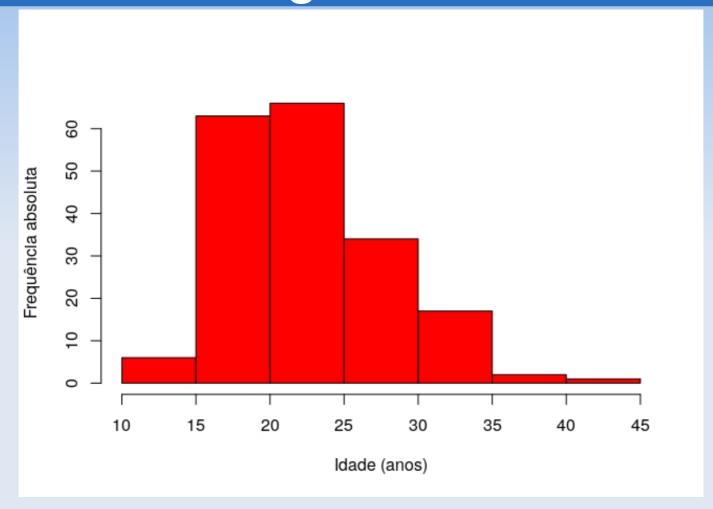

Representação gráfica para dados categóricos

 Quais são os n's e os percentuais em cada categoria?

- Diagrama de barras
- Gráfico de setores

Distribuição das mães de recém nascidos segundo raça

Comandos do R:


- > tb<-table(peso\$race)
- > barplot(prop.table(tb)*100,names.arg=c("Branca","Negra","Outra"),ylab="Frequência relativa (%)",xlab="Raça",col=rainbow(3))
- > pie(prop.table(tb),labels=c("Branca","Negra","Outra"),clockwise=TRUE,col=rainbow(3))

Representação gráfica de variáveis quantitativas

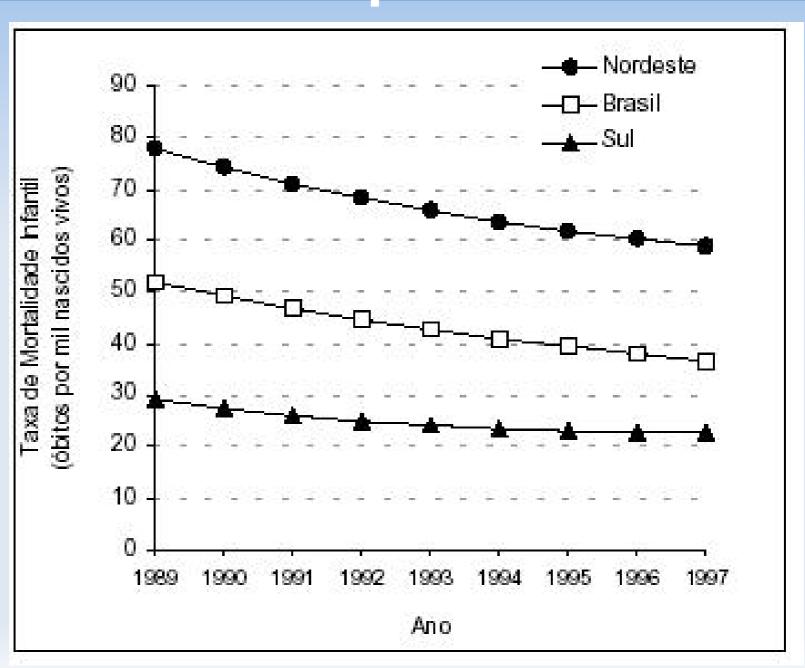
- Qual é a forma da distribuição (simétrica ou assimétrica)?
- Onde fica o centro dos dados?
- Qual é o espalhamento/variabilidade dos dados?

- Histograma
- Boxplot

Distribuição de mães de recém nascidos segundo faixa etária

Comando do R:

hist(peso\$age,xlab='Idade',ylab='Frequência absoluta',main='',col="red")


Representação gráfica de dados temporais

 Dados coletados ao longo do tempo são comuns em pesquisas médicas

- Gráfico de linhas é o mais apropriado
 - Eixo horizontal: escala temporal
 - Eixo vertical: variável de interesse

 Permite constatar tendências e identificar eventos extremos

Representação gráfica de dados temporais

RESUMOS NUMÉRICOS

- MEDIDAS DE TENDÊNCIA CENTRAL
 - Média
 - Mediana
 - Moda
- MEDIDAS DE DISPERSÃO OU VARIABILIDADE
 - Amplitude
 - Variância
 - Desvio-padrão
 - Coeficiente de variação
 - Escore padronizado

Dados Qualitativos

 Para resumir dados qualitativos numericamente usamos contagens, proporções, taxas

• Exemplos:

- Se 70 de 140 estudantes de medicina são mulheres, podemos dizer que a proporção de mulheres é de 0,5 ou em termos percentuais que 50% são mulheres.
- Se numa amostra de 5000 pessoas, 7 são portadores de uma doença podemos expressar este achado como uma proporção (0,0014) ou percentual (0,14%), ou taxa (1,4 por mil).

Exemplo: Recém nascidos

- 39,2% das mães fumaram durante a gravidez
- 6,3% eram hipertensas

Comandos do R:

- > round(table(peso\$smoke)/length(peso\$smoke)*100,1)
- > round(table(peso\$hyper)/length(peso\$hyper)*100,1)

Dados Quantitativos

- Para resumir numericamente dados quantitativos escolhemos medidas de:
 - Locação (Tendência Central)

Valor ao redor do qual as observações tendem a se agrupar

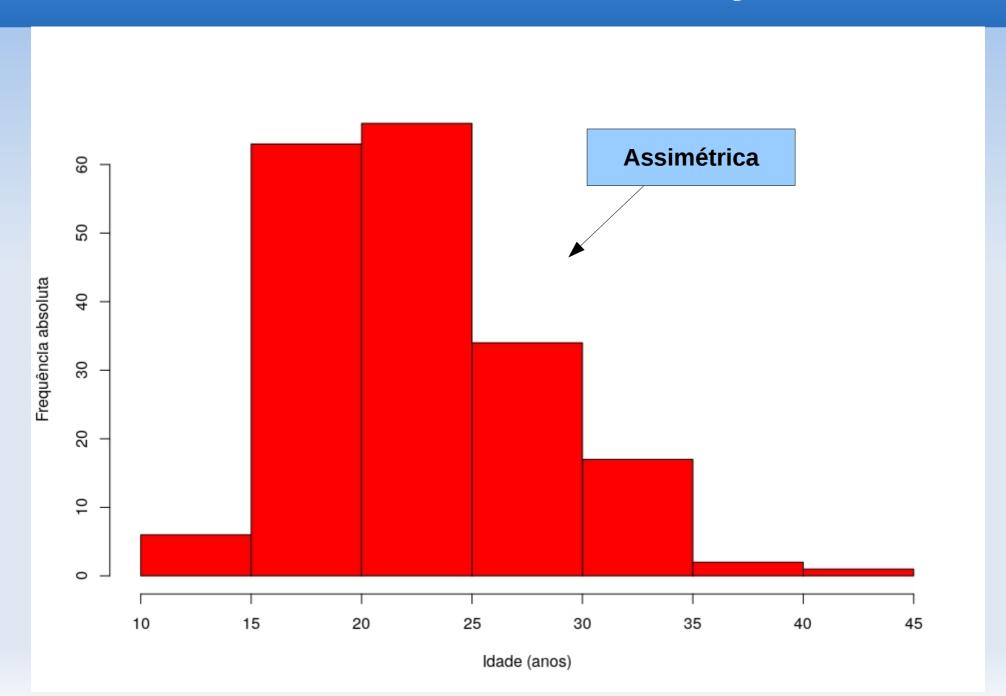
Dispersão (Variabilidade)

As observações estão próximas do centro ou estão dispersas num amplo intervalo de valores?

 Existem três medidas principais de locação e dispersão:

Locação	Dispersão
Média	Desvio-padrão
Mediana	AIQ
Moda	Proporção

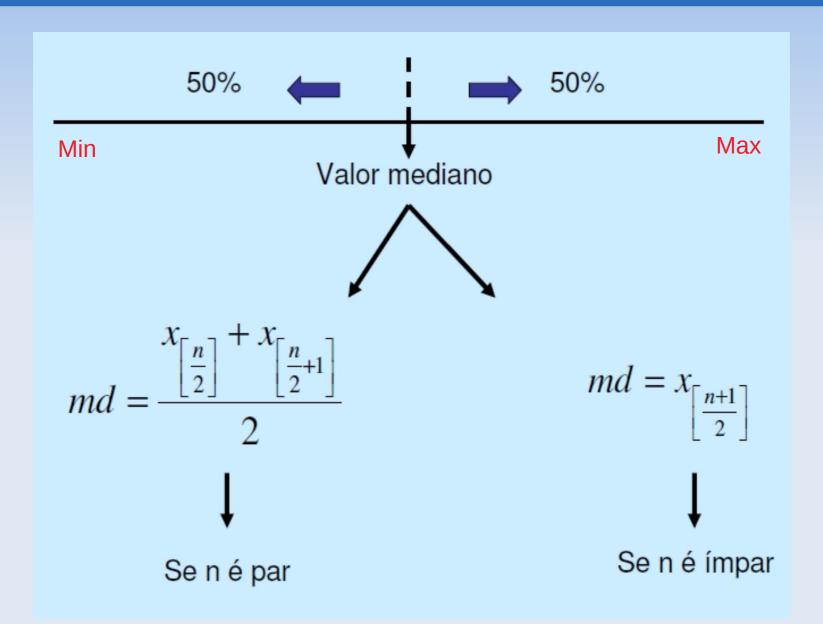
Moda e Proporção


- Moda: Valor mais que ocorre com mais frequência
- Dispersão: Proporção dos dados iguais à moda

Distribuição de mães de recém nascidos segundo faixa etária

Idade (anos)	Frequência					
	Absoluta	Relativa (%)	Acumulada (%)			
10⊢15	6	3,17	3,17			
15⊢20	63	33,33	36,50			
20⊢25	66	34,92	71,42			
25⊢30	34	17,99	89,41			
30⊢35	17	9,00	98,41			
35⊢40	2	1,06	99,47			
40⊢45	1	0,53	100			
Total	189	100				

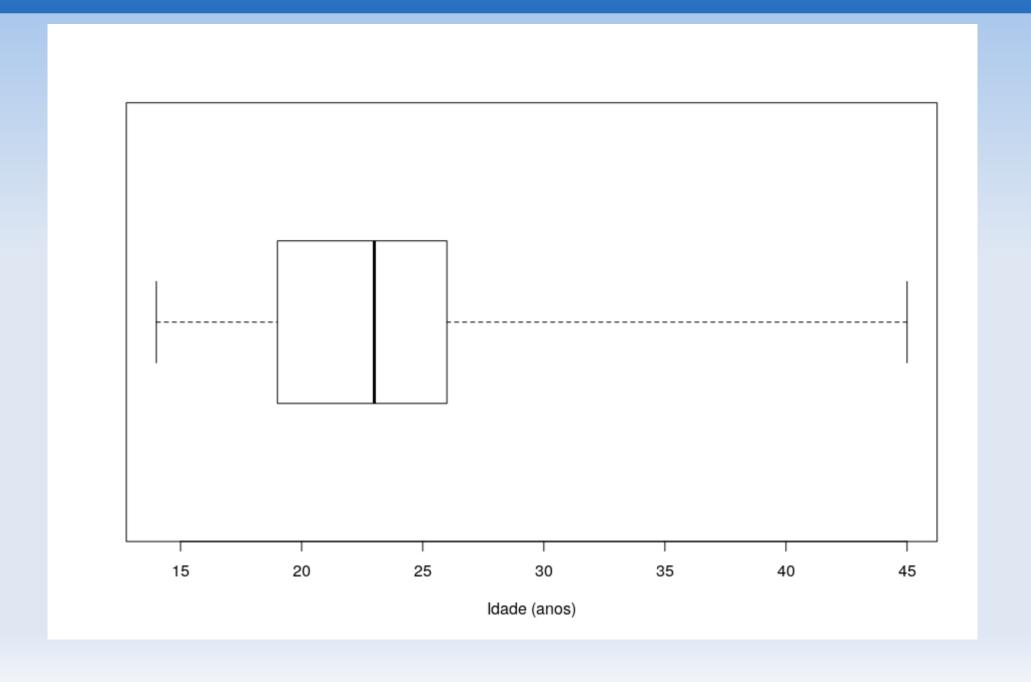
Classe modal

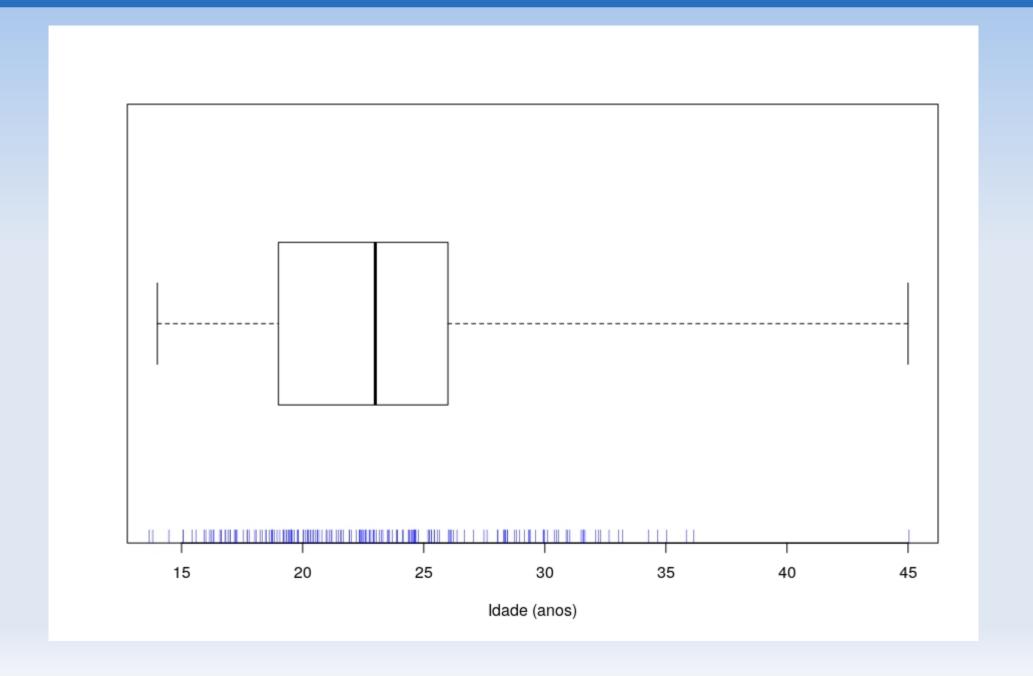

Problema da distorção

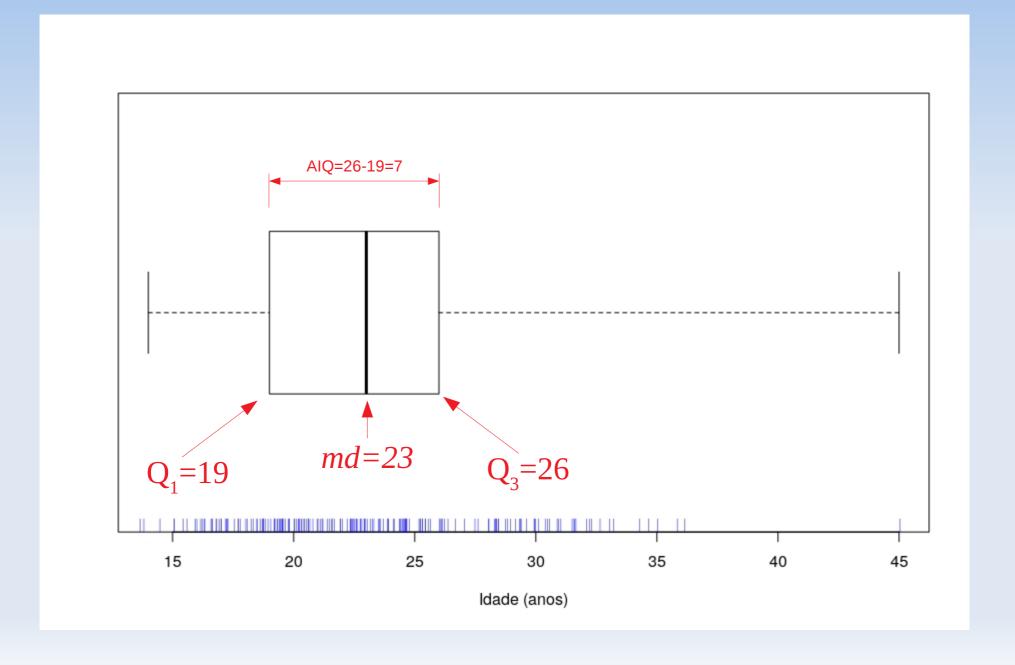
Mediana e AIQ

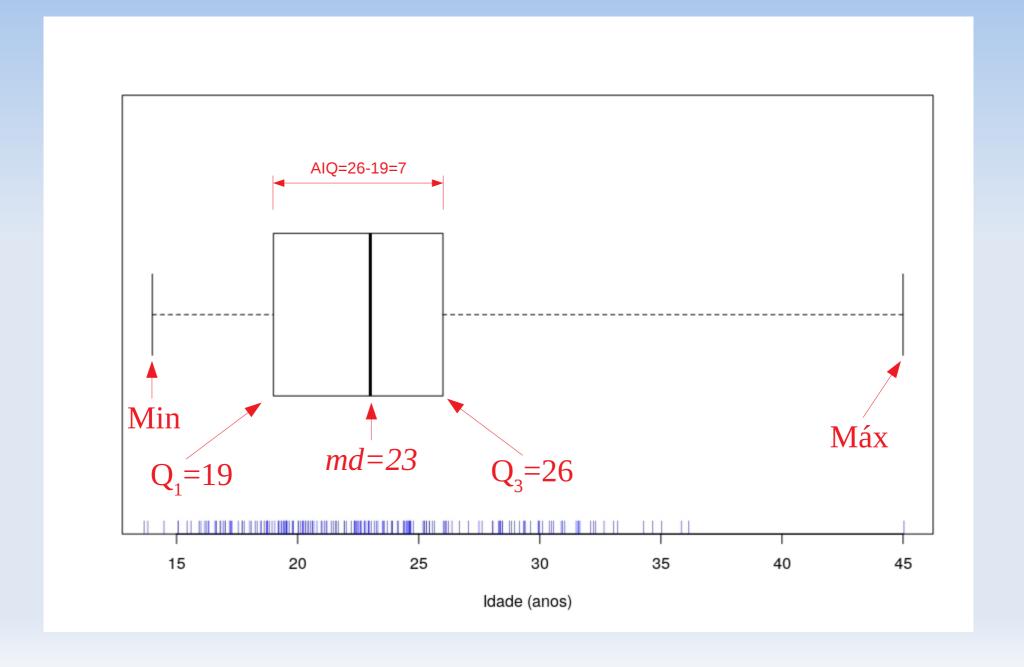
- Quartis ou Percentis: especialmente úteis para dados não simétricos
- Mediana (md ou Q₂): valor que divide os dados ordenados ao meio, ou seja, ½ dados tem valores maiores do que a mediana, ½ dados tem valores menores do que a mediana.
- Quartis inferior e superior (Q_1 e Q_3): valores baixo dos quais caem $\frac{1}{4}$ e $\frac{3}{4}$ dos dados.
- 5 números sumários (MQMQM): Min, Q₁,
 Mediana, Q₃, Max
- Amplitude Inter-Quartis: AIQ=Q₃-Q₁

Mediana

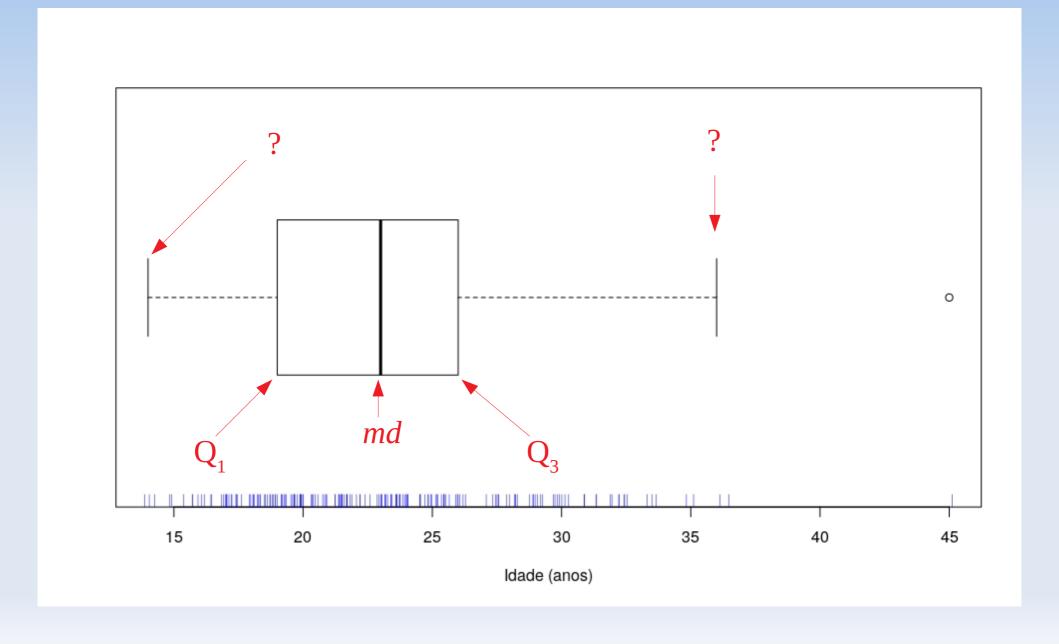


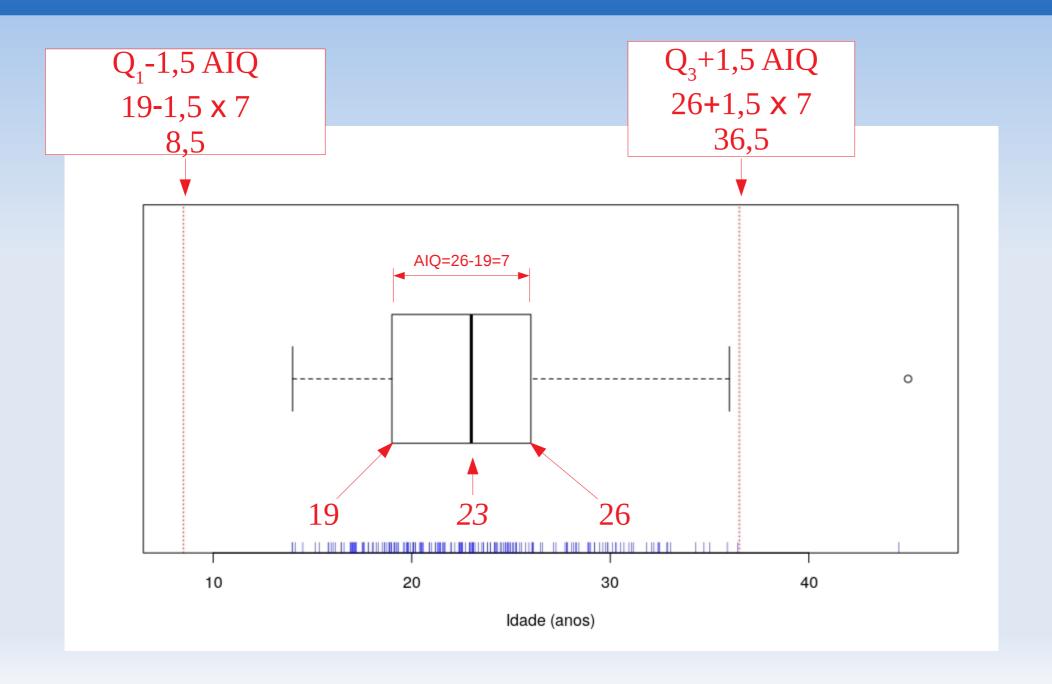

Usando o R

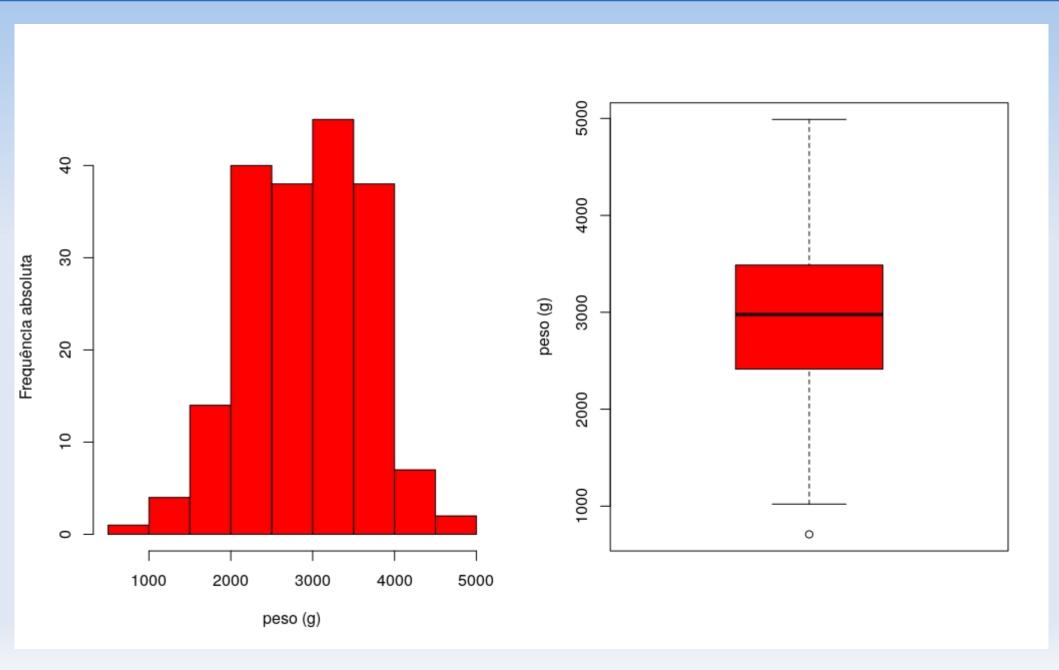

> summary(peso\$age)

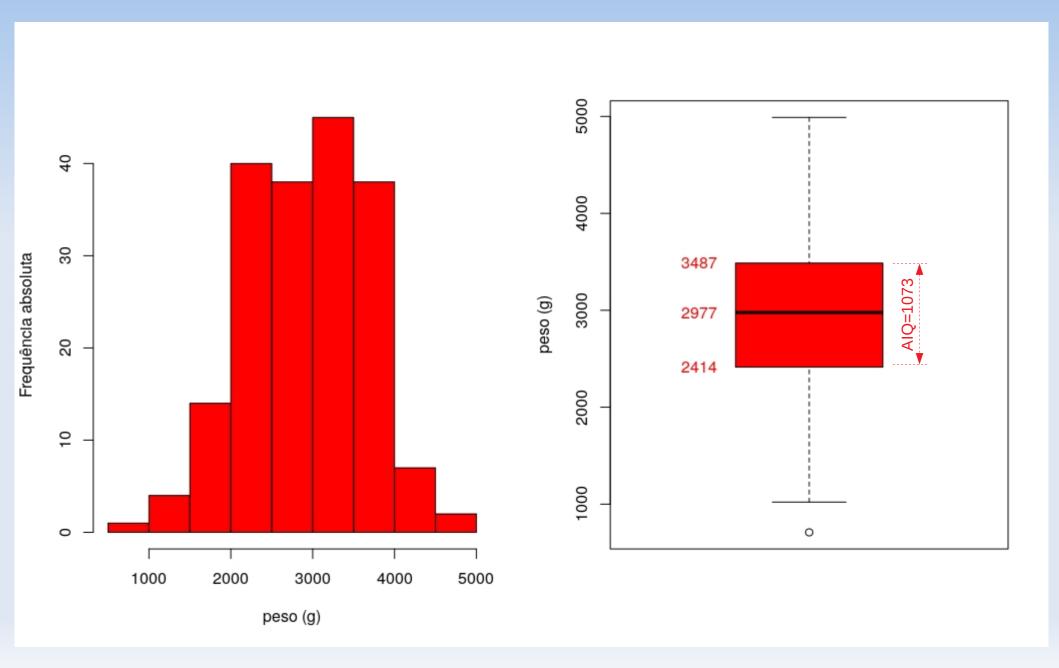

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 14.00 19.00 23.00 23.24 26.00 45.00
```

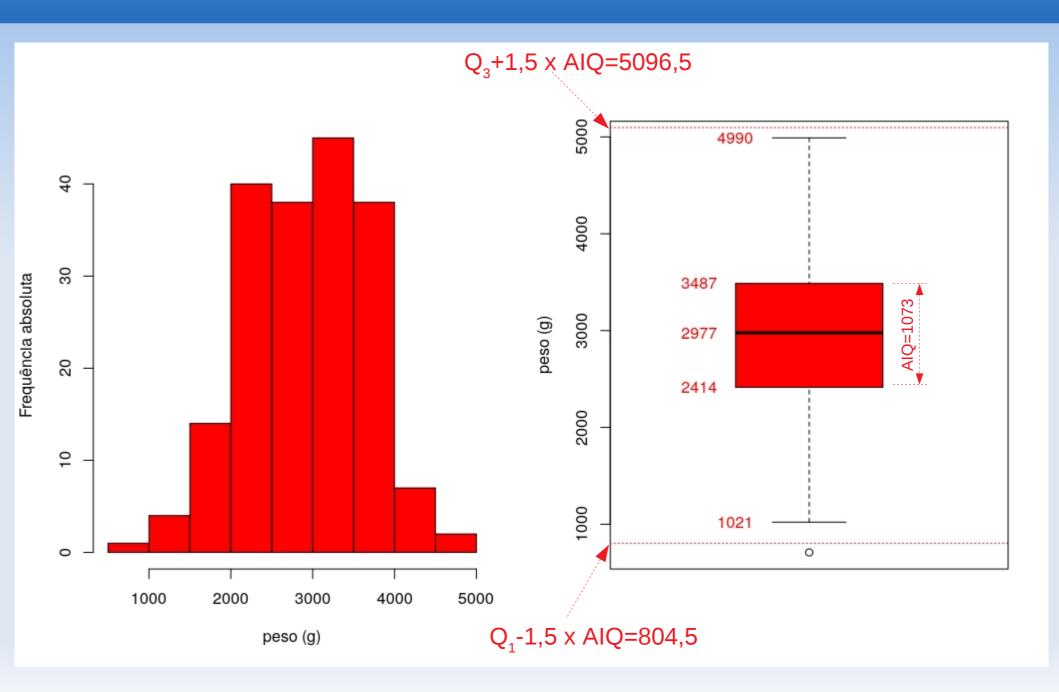
- > boxplot(peso\$age, range=0,xlab='Idade
 (anos)',horizontal=TRUE)
- rug(jitter(peso\$age,amount=0.5), col='blue')

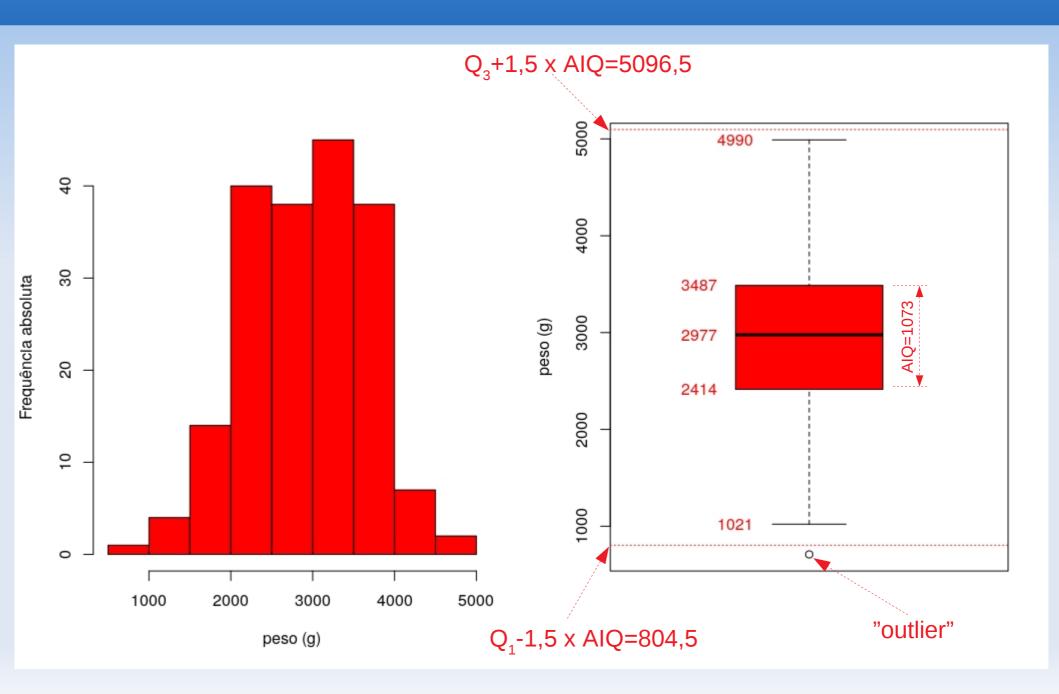


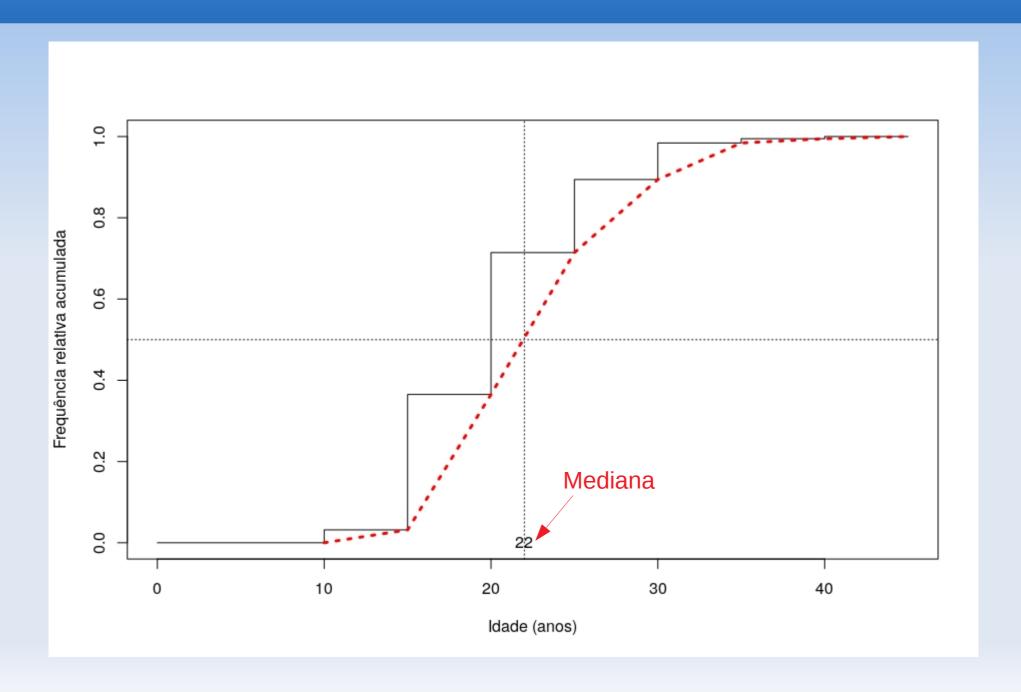




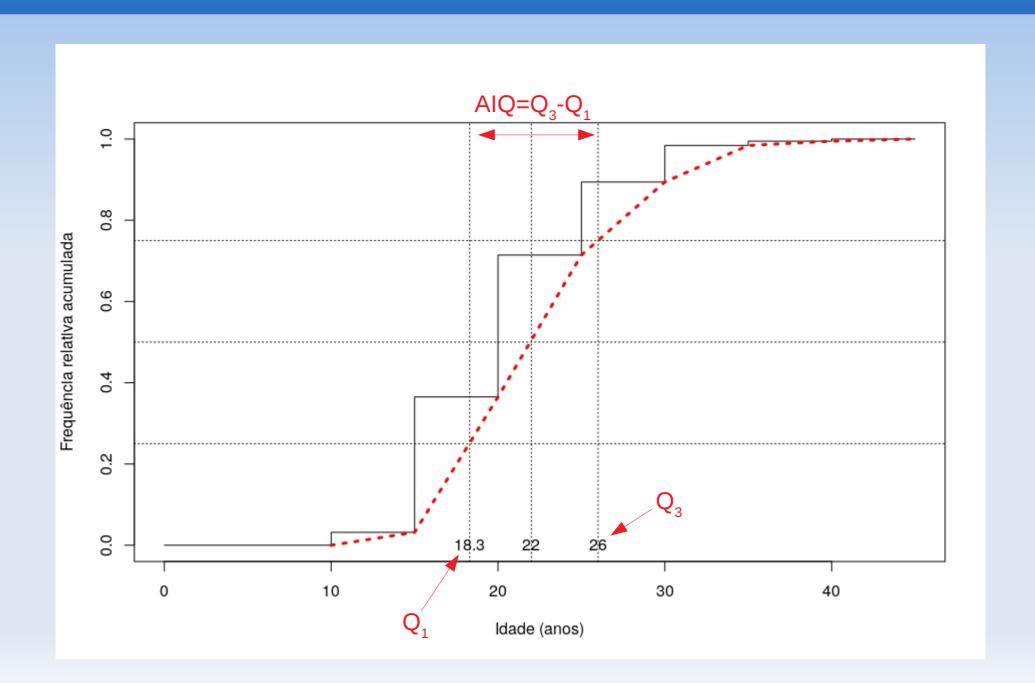

Alternativamente




Alternativamente



Ogiva

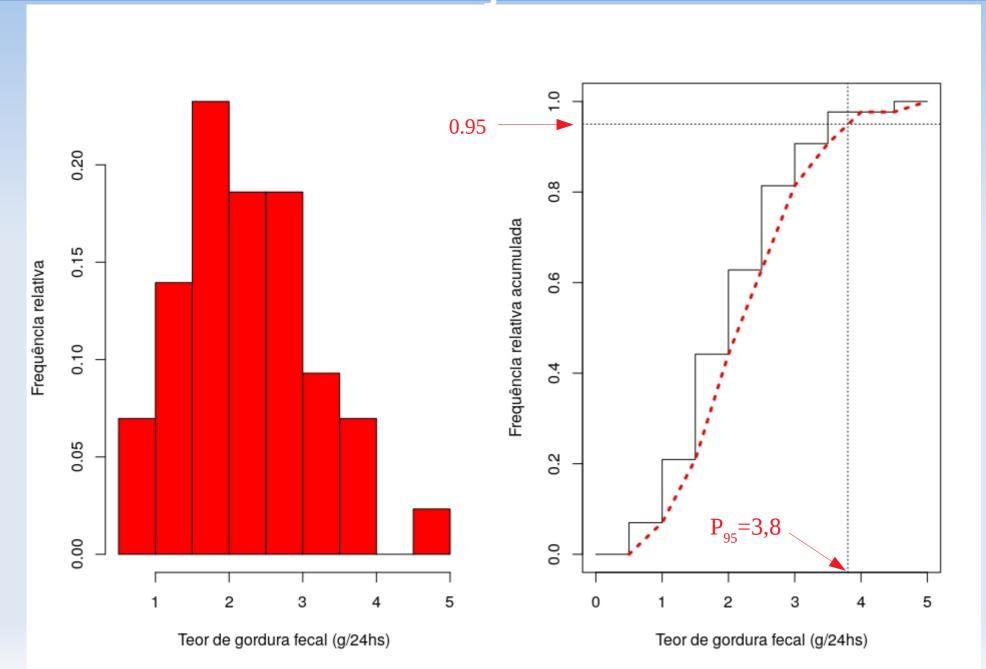

- Gráfico de percentuais acumulados
- Através da ogiva podemos estimar qualquer percentil da distribuição.

 Exemplo: Estimar a idade abaixo da qual encontram-se 50% dos indivíduos.

Ogiva das idades

Ogiva das idades

Exemplo: Teor de gordura fecal (teor-de-gordura.r)


- Dosagem de gordura: útil no diagnóstico e acompanhamento da síndrome da má absorção - quando se tem a síndrome temse um aumento do teor de gordura fecal.
- Até 1984 não existia um padrão de referência para crianças brasileiras.
- Prof. Francisco Penna (titular de pediatria da UFMG) examinou
 43 crianças sadias

```
Tabela: Teor de gordura fecal (g/24 hs)

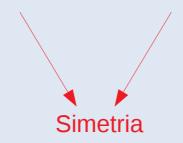
3,7 1,6 2,5 3,0 3,9 1,9 3,8 1,5 1,1
1,8 1,4 2,7 3,3 3,2 2,3 2,3 2,3 2,4
0,8 3,1 1,8 1,0 2,0 2,0 2,9 3,2 1,9
1,6 2,9 2,0 1,0 2,7 3,0 1,3 1,5 4,6
2,4 2,1 1,3 2,7 2,1 2,8 1,9
```

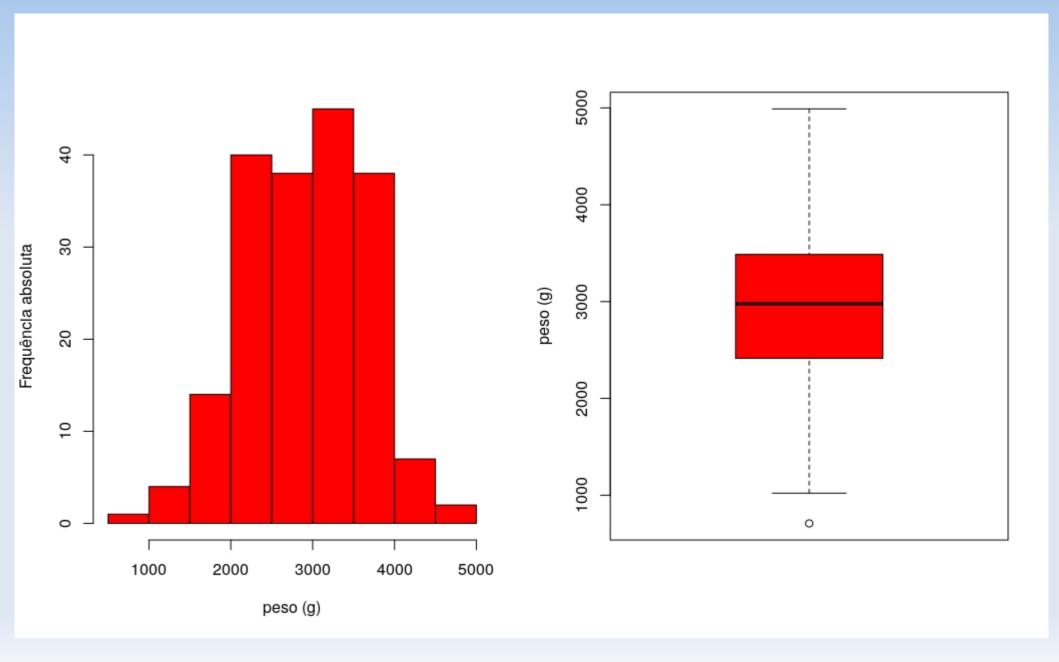
- Note a grande variabilidade dos resultados!
- Podemos definir um padrão de referência usando a ogiva.

Exemplo: Teor de gordura fecal em crianças sadias

Média e desvio-padrão

 Usada para resumir dados quantitativos simétricos


Média:


$$\bar{x} = \frac{\sum x}{n}$$

Exemplo: Peso de bebês recémnascidos (cont.)

> summary(peso\$bwt)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 709 2414 2977 2945 3487 4990
```


Medidas de variabilidade

Amplitude total

Exemplo: Amplitude das idades = 45-14 = 31

É uma boa medida de variabilidade?

Medidas de variabilidade

Amplitude total

Exemplo: Amplitude das idades = 45-14 = 31

É uma boa medida de variabilidade?

Não utiliza todas as observações.

Medidas de variabilidade

Considere os conjuntos:

• D={3,5,5,7}

Média = 5

- O conjunto C não apresenta variação. Uma medida óbvia seria ...
- Como medir variação nos conjuntos A, B e D?

Desvio médio

 A idéia é "medir" a dispersão dos dados em relação à média

Desvios	Α	В	С	D
	-2	-4	0	-2
	-1	-2	0	0
	0	0	0	0
	1	2	0	2
	2	4	0	
Soma				

Desvios quadráticos	A	В	С	D
	4	16	0	4
	1	4	0	0
	0	0	0	0
	1	4	0	4
	4	16	0	
Soma				

Desvios quadráticos	Α	В	С	D
	4	16	0	4
	1	4	0	0
	0	0	0	0
	1	4	0	4
	4	16	0	
Soma	10	40	0	8

Desvios quadráticos	A	В	С	D
	4	16	0	4
	1	4	0	0
	0	0	0	0
	1	4	0	4
	4	16	0	
Soma	10	40	0	8
Desvio quadrático médio	2	8	0	2

Desvios quadráticos	Α	В	С	D
	4	16	0	4
	1	4	0	0
	0	0	0	0
	1	4	0	4
	4	16	0	
Soma	10	40	0	8
Desvio quadrático médio	2	8	0	2

VARIÂNCIA

Definição de variância

N: total populacional

$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

$$S^{2} = \frac{\sum (x - \overline{x})^{2}}{n - 1} \xrightarrow{\text{n: total amostral}} \text{Variância amostral}$$

Exemplo

Considerando que A, B, C e D são amostras:

•
$$A={3,4,5,6,7}$$
 $s^2=2,5$

• B=
$$\{1,3,5,7,9\}$$
 s²=10

•
$$C=\{5,5,5,5,5\}$$
 $s^2=0$

• D=
$$\{3,5,5,7\}$$
 s²=2,7

Desvio-padrão

- A variância é uma medida de dispersão obtida em unidades quadráticas.
- Para que a dispersão tenha a mesma unidade de medida dos dados originais calculamos a raiz quadrada da variância.

Desvio-padrão=√variância

Notação:

- σ=desvio-padrão populacional
- s=desvio-padrão amostral

Exemplo

Considerando que A, B, C e D são amostras:

$$s^2=2,5$$
 $s=\sqrt{2,5}=1,58$

$$s^2=10$$
 $s=\sqrt{10}=3.16$

$$s^2=0$$
 $s=\sqrt{0}=0$

$$s^2=2,7$$
 $s=\sqrt{2},7=1,64$

Exemplo: pesos de recém nascidos

- Pesos de recém nascidos vs tabagismo durante a gravidez
- > by(peso\$bwt,peso\$smoke,mean)
- > by(peso\$bwt,peso\$smoke,sd)

	Tabagismo			
Peso	Sim	Não		
Média	2771,9	3055,7		
Desvio- padrão	659,6	752,7		

Exemplo: pesos de recém nascidos

- Pesos de recém nascidos vs tabagismo durante a gravidez
- by(peso\$bwt,peso\$smoke,mean)
- > by(peso\$bwt,peso\$smoke,sd)

	Tabagismo		
Peso	Sim	Não	
Média	2771,9	3055,7	
Desvio- padrão	659,6	752,7	

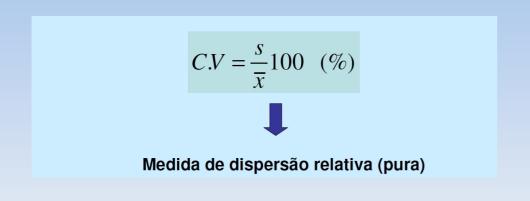
 As mães fumantes tem bebês com pesos mais homogêneos do que os bebês de mães não fumantes?

Exemplo: pesos de recém nascidos

- Pesos de recém nascidos vs tabagismo durante a gravidez
- by(peso\$bwt,peso\$smoke,mean)
- > by(peso\$bwt,peso\$smoke,sd)

	Tabagismo			
Peso	Sim	Não		
Média	2771,9	3055,7		
Desvio- padrão	659,6	752,7		

Coeficiente de variação


$$CV = \frac{s}{\overline{x}}100 \quad (\%)$$

Medida de dispersão relativa (pura)

 As mães fumantes tem bebês com pesos mais homogêneos do que os bebês de mães não fumantes?

Coeficiente de Variação

	Tabagismo			
Peso	Sim	Não		
Média	2771,9	3055,7		
Desvio- padrão	659,6	752,7		
CV (%)	24	25		

- > m=by(peso\$bwt,peso\$smoke,mean)
- > s=by(peso\$bwt,peso\$smoke,sd)
- > round(s/m*100)

peso\$smoke: 0

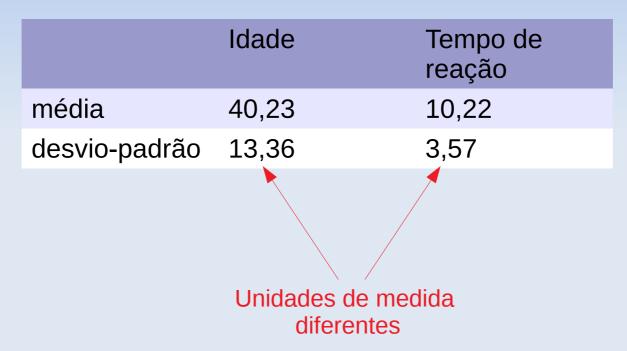
[1] 25

peso\$smoke: 1

[1] 24

Exemplo: Teste sorológico

paciente	sexo	tipo.sangue	idade	reação	tempo.de.reação
1	М	A	8	negativa	15,5
2	F	0	46	positiva	8,7
3	М	В	50	negativa	2,8
4	F	0	42	positiva	11,9
5	F	0	52	positiva	5
6	М	A	56	positiva	9,7
7	М	AB	42	negativa	13
8	М	В	38	negativa	7,1
9	F	A	48	negativa	11,1
10	М	Α	58	negativa	5,7
11	М	A	11	positiva	6,3
24	F	Α	46	negativa	10,8
25	М	В	45	negativa	11,2
26	М	AB	42	negativa	3,6
27	F	0	58	negativa	9,8
28	F	0	45	positiva	7,2
29	М	А	44	negativa	12,8
30	F	Α	22	negativa	10,6


Exemplo: Teste sorológico

Ex: Os pacientes são mais parecidos entre sí nas idades ou nos tempos de reação?

	Idade	Tempo de reação
média	40,23	10,22
desvio-padrão	13,36	3,57

Exemplo: Teste sorológico

Ex: Os pacientes são mais parecidos entre sí nas idades ou nos tempos de reação?

Coeficiente de Variação

Ex: Os pacientes são mais parecidos entre sí nas idades ou nos tempos de reação?

	Idade	Tempos de reação
média	40,23	10,22
desvio-padrão	13,36	3,57
CV	33	35

$$C.V = \frac{s}{\overline{x}}100 \quad (\%)$$

Medida de dispersão relativa (pura)

Escore padronizado

- Ao contrário do CV, é útil para medir resultado indivídual.
- Por exemplo compare:

Nota	Média	Desempenho
7	5	
8	6	

- Além de comparar a nota individual com a média da turma, é importante avaliar se a variabilidade foi grande ou não.
- Por exemplo:

Nota	Média	Desvio-padrão	Desempenho
7	5	2	
8	6	4	

Escore padronizado

$$Z = \frac{x - \overline{x}}{S}$$

Nota	Média	Desvio-padrão	Escore Padronizado
7	5	2	1
8	6	4	0,5

Interpretação?

Usando o R Commander

- Abrir o R e digitar os seguintes comandos:
- install.packages("Rcmdr",dep=TRUE)
- > require(Rcmdr)

Na janela do Rcmdr:

- Selecionar a aba Dados>Importar arquivos de dados>de arquivo texto, clipboard ou URL...
- Defina o nome do conjunto de dados: peso
- Clique em OK
- Na nova janela, selecione o arquivo birthwt.dat

Usando o R Commander

- Para visualizar os dados clique na aba: Ver conjunto de dados
- Note que todas as colunas foram preenchidas com números inclusive para as variáveis categóricas
- Para dizer ao R quais são as categóricas:
 - Selecione a aba Dados>Modificação de variáveis no conjunto de dados...>Converter variável numérica para fator...
 - Selecione todas as variáveis categóricas do banco e na opção Níveis dos fatores selecione Defina nomes dos níveis

Usando o R Commander

- Para dizer ao R quais são as categóricas:
 - Uma nova janela pergunta: Sobrescrever variável?
 Selecione a opção: Sim
 - Na nova janela digite os nomes dos níveis para a variável
- Fazendo resumos numéricos dos dados
 - Selecione aba: Estatísticas>Resumos>Conjunto de dados ativo
- Fazendo gráficos
 - Selecione Gráficos>Gráfico de Barras
 - Escolha a variável e clique em OK
 - Selecione Gráficos>Histograma
 - Escolha a variável e clique em OK