

Tutorial

Disciplina: Geoestatística Professor: Dr. Paulo Justiano R. Junior Discente: Iábita Fabiana Sousa¹ Kuang Hongyu¹

Piracicaba - 2012

¹Doutorando em Estatística e Experimentação Agronômica - ESALQ/USP

Análise utilizando o SGeMS - Dados utilizados na primeira semana de aula.

O Stanford Software Modelagem geoestatística (SGeMS) é um pacote computacional de código aberto para a solução de problemas que envolvem variáveis espacialmente relacionadas, a sua conceptualização começou em 2001 que utilizou como base a biblioteca GsTL, mas ainda hoje é atualizada com novos algoritmos. Ele fornece uma interface amigável, uma visualização 3-D interativo, e uma grande variedade de algoritmos, sendo bastante utilizado por graduados em Ciências da Terra e pesquisadores, bem como profissionais de meio ambiente, mineração e engenharia de petróleo.

Informações sobre o software pode ser encontrado no livro Aplicado Geoestatística com SGeMS que fornece um guia passo-a-passo para o uso de algoritmos SGeMS como também demonstrações de sua implementação, a discussão de possíveis limitações, e ajuda sobre a escolha de um algoritmo em detrimento de outro. Mais informações sobre o mesmo pode ser obtido no site oficial <u>http://sgems.sourceforge.net/?q=node/20</u>, bem como em tutoriais como é o caso do de Geoffrey Bohling do Kansas Geological Survey, Universidade do Kansas <u>http://people.ku.edu/~gbohling/BoiseGeostat/</u>.

• Instalação do software S-GeMS

A instalação do software pode ser realizada em sistemas operacionais Windows e Linux, apresentando diferentes escolhas de acordo com o sistema operacional.

• Interface do S-GeMs

O interface do S-GeMS é composto por três grandes secções: o painel de algoritmos, o painel de visualização e o painel de comandos. A partir do painel de comandos é possível introduzir por código os comandos que se podem fazer com teclado e mouse a partir dos painéis algoritmos e visualização.

Neste trabalho, tudo será feito através da interface, ou seja, não trabalharemos com a linguagem do painel de comandos.

• Inserindo dados no S-GeMS

Para inserir dados para o S-GeMS basta fazer um Load Object (Ctrl+L) ou simplesmente levá-lo com o mouse para dentro do visualizador do S-GeMS. Ao ser feito isto vai aparecer o seguinte menu:

Select objec	t type point se	t	*
File preview			
dados intro	0		_
3			
coords.x			
dados.y			
74.9	617	80.02	
49.9	48.8	68.24	
54.4	61.3	83.86	
7.1	14	66.68	
35.3	51.3	72.23	
64.5	58.6	88.64	
46	21.4	80.57	
27.4	90	41.53	
80.9	31.7	67.79	
99.7	75	102.86	
02.8	30	32.85	-
21.5	29.3	27.07	=
36.4	76.9	56.01	
4	54.8	56.29	
58.3	81.7	34.7	
48.7	70.6	55.37	
85.1	58.6	92.37	
85.3	59	91.31	
98	19.5	57.79	
20.1	27.5	75.93	
45	35	52.42	
33	34.7	77.59	
72.7	9.7	58.03	
97.5	52.1	50.95	
79.9	52.1	84.16	
61.7	50.8	87.19	
31.2	84.6	44.96	
65.8	65.4	80.95	
41.7	37.5	21.9	
23.6	60.8	42.39	
2.2	44.6	30.93	
88.9	21.7	72.31	
15	31.1	62.64	
53.1	34.7	34.49	

Figura 1. Imagem do banco de dados

Independente da extensão do arquivo que no caso utilizado foi extensão ".txt", esse é o estilo próprio que os ficheiros devem ter para entrarmos com os dados no S-GeMS:

1^a Linha – Nome do projeto

2ª Linha – Número de variáveis existentes no ficheiro

3^a,4^a e 5^a Linhas coordenadas em x, coordenadas em y e variável respectivamente de acordo com a ordem da coluna.

Se fosse o caso poderiam ser acrescentadas outras variáveis.

O tipo de objeto neste caso é um point set já que ós dados estão referênciados espacialmente, ou seja, cada valor tem uma coordenada x e y.

• Visualizando os dados

Após entramos com os dados podemos trabalhar sobre eles, basta que selecionemos a sua visualização carregando no objeto e respectiva propriedade que pretendemos observar.

Podemos visualizá-lo ou rotacioná-lo como desejarmos, o resultado será imediato e terá o seguinte aspecto como apresentam as figuras 2, 3 e 4:

Figura 2 - Visualização dos pontos

Figura 3 - Visualização dos pontos

Figura 4 - Visualização dos pontos

• Análise descritiva dos dados

As ferramentas no S-GeMS pode ser encontrada na barra superior no "Data Analysis", em que podemos ter acesso ao menu de histogramas ("Histogram", Ctrl+H), menu do QQ/PPplot, Scatterplot (gráfico de dispersão) e menu de variogramas ("Variogram").

Analisando a distribuição dos dados a partir do histograma.

Figura 5 – Análise descritiva

• Obtendo e escolhendo a função de variograma

Ao selecionarmos a opção "variogram" no Data Analysis, aparece o menu de variografia e no qual podemos fazer um estudo de variografia para cada contaminante separadamente. Assim selecionamos a opção "Compute variograms from scratch" e "Amostras dos dados" no Grid name (e o conjunto de pontos que se pretende estudar, eles chamam grid a tudo). Passamos para a definição dos nossos intervalos de variografia. O S-GeMS pede os parâmetros numero de intervalos (number of lags), tamanho do intervalo (lag separation), tolerância no tamanho (lag tolerance), direção (azimuth, dip), tolerância angular (tolerance), limite de direção (bandwith), e limite superior e inferior (head cut off e tail cut off). Na Figura abaixo estão os parâmetros pedidos pelo software.

		Number of lags	200	-	Ī	<u>,</u>		
		Lag separation	0.5		1		*/>	
		Lag tolerance	0.1				separation	
ire	ctions —							-
			1	[]	/ Angles ar	e in dearees,		
	Numbe	r of directions	3	tol band	Angles ar width Use a tok	e in degrees. erance tol > 90 to indic	ate an omni-directio	245
1	Numbe azimuth	er of directions	3 束 tolerance 30	bandwidth	Angles ar width Use a tok measure type	e in degrees, erance tol > 90 to indic head indic. cutofl	cate an omni-directio	x r.
1 2	Numbe azimuth 0 90	dip 0	3 🜩 tolerance 30 30	bandwidth	Angles ar Width Use a tok measure type variogram • variogram •	e in degrees. erance tol > 90 to indic head indic. cutoff	tail indic. cutoff	245
1 2 3	Numbe azimuth 0 90 0	dip 0 0 0	3 Tolerance 30 30 100	tol band bandwidth 1 1 100000	Angles ar Width Use a tok measure type variogram v variogram v	e in degrees. erance tol > 90 to indic head indic. cutofl	tail indic. cutoff	2/5

Figura 6 - Variograma

Figura 7 – Ajuste dos modelos

Apenas 3 tipos de modelos podem ser escolhido para o ajuste aos dados: Exponential, Spherical e Gaussian, O "Sill" corresponde ao patamar e dado que as nossas amostragens estão bem distribuídas sugere-se por colocar o valor da variância dos dados, obtida no histograma.

• Grid aplicada às amostras

As grids criadas pelo S-GeMS são sempre em relação aos eixos x, y e z e a sua forma e sempre paralelepipédica.

Figura 6 – Grid aplicado as amostras

Agora já podemos fazer a estimação por krigagem. Na seção de "Algorithms" no interface do S-GeMS carregamos na opção "Estimation" e seguidamente na opção "Kriging".

• *##* fazendo a predição espacial (krigagem) e variância de Krigagem.

Figura 9 – Mapa de Krigagem

Figura 10 - Mapa de variância de Krigagem.

Referências

1. Nicolas Remy, Alexandre Boucher,2009, Applied Geostatistics with SGeMS: A User's Guide, Cambridge University Press