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a  b  s  t  r  a  c  t

Data  on  catch  and  fishing  effort  are  used  for estimating  the relative  abundance  of  a  fish  stock.  Geostatistical
models  have  been  used  in this  sort of analysis.  Multivariate  geostatistical  models  have  been  used  in
several  areas  but  not  often  with  fisheries  data.  In this  paper  a simulation  study was carried out  in  order
to  compare  an  index  of  catch  per  unit  of  fishing  effort  (cpue)  based  on:  (1)  the  adjustment  of a  univariate
geostatistical  model  of the  ratio  between  catch  and  effort;  and  (2)  a bivariate  model  in  which catch  and
effort  are  simultaneously  modeled.  The  estimates  obtained  from  both  models  presented  close  results
suggesting  that there  is no  advantage  in  using  the  bivariate  model  for estimating  the  index  and  indicating
that  the  univariate  model  is  preferred.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Logbooks gathered from commercial fisheries provide huge data
sets that are valuable for fish stock management (Vignaux, 1996;
Walters, 2003). These data usually include: the yield or the num-
ber of individuals caught from a stock using one or more fishing
gears; and the fishing effort—expressed, for instance, as days spent
at sea, days spent fishing, or the number of hooks per time unit
(Nadal-Egea, 1996). Logbooks for marine fisheries are usually geo-
referenced to predefined fishery sub-regions that are generally
at a much coarser spatial scale than the fishing gear deployed.
These catch (C) and effort (f) data are used in fish stock assess-
ments (e.g., Vignaux, 1996) and are often used to calculate cpue
as an index of stock abundance. Cpue may  not be directly pro-
portional to stock abundance in a given area. However, in many
practical situations such an assumption is necessary. Provided catch
and effort data are available for every sub-region within a fish
species distribution, three cpue indices may  be defined (cpue1,
cpue2, cpue3). Petrere et al. (2010) and Pereira et al. (2009) pro-
vide the following definitions: cpue1 =

(∑
Ci/fi

)
/n =̄(C/f ) which

is the mean of ratios between catch and effort in different quadrats;
cpue2 =

∑
Ci/

∑
fi = C̄/f̄ which is the ratio between the total

catch across all quadrats and the total effort across all quadrats; and
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cpue3 =
∑

Ci · fi/
∑

f 2
i

= C · f /f 2 which is the ratio between the
sum of the products of the catch by the effort in different quadrats,
and the sum of the squares of the efforts.

Indices obtained by applying the above equations to fishery-
dependent data should be analyzed with caution (Hilborn and
Walters, 1992; Quinn and Deriso, 1999). Fisheries are known not to
sample in a representative manner both spatially and temporally;
and often, catch and effort data are not avaliable for all predefined
areas within a stock’s distributions. Walters (2003) indicates that
missing cpue values must be imputed and it is critical to be explicit
about how such values have been derived. In this paper, we focus
on the spatial aspect of cpue imputation. We  address the situa-
tion where fishing was  not carried out in all quadrats in a region
or where catch and effort data were not collected (or not properly
recorded in logbooks). In this situation and in order to analyze data
on catch and effort and calculate a cpue index for the entire region,
we make assumptions based on what would have occurred in the
quadrat that was  not observed. Walters (2003) offers an alternative
to estimating an index using only the observed data, for the same
period of time, from quadrats neighboring those quadrats for which
no data are available. His alternative is feasible where it is possible
to show a spatial correlation structure between the catch ratios. He
suggests that spatial statistics may be employed in order to inter-
polate data for the unobserved quadrats. He also suggests the use
of covariates such as water temperature to assist the interpolation
process.

Nóbrega (2008) identifies spatial dependence in catch–effort
data derived from a small-scale fishery in northern and northeast-
ern Brazil, using geostatistics for modeling and standardizing cpue.
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Nishida and Chen (2004) also noted the presence of spatial correla-
tion of data for yellowfin tuna (Thunnus albacore) cpue, where they
incorporated a spatial component in their cpue models. According
to Nishida and Chen (2004),  the spatial dependence occurs because
for many fish species the individuals live and move together; there-
fore, the closer in space the observations are, the more alike they
are.

In the above-cited references the authors propose the use of
spatial models for the ratio between catch and effort, i.e. the quan-
tity C/f. However, if the data available are not simply represented
as C/f but can be georeferenced as catch and effort pairs (C, f), an
alternative would be to model the pairs of variates (C, f), as pro-
posed by Pereira et al. (2009).  The current paper addresses this,
namely: is it advantageous, when estimating an index of type cpue1,
to model the pair (C, f) instead of the ratio C/f when imputing values
for quadrats that were not observed?

Multivariate geostatistical models have been used in several
areas – for example, to model pollutants in the atmosphere
(Schmidt and Gelfand, 2003), to model sales price and yield gen-
erated by real estate (Gelfand et al., 2004), and to model annual
volumetric increment of forest trees (Bognola et al., 2008). Pereira
et al. (2009) used a bivariate model for (C, f), which was com-
pared with another bivariate model that did not consider the spatial
dependence between C and f. Geostatistical multivariate models
in such studies have demonstrated a superior performance when
compared to models that do not consider the spatial correlation;
and it has also been shown that such multivariate geostatistical
models are superior to those geostatistical models where the vari-
ates are mutually independent. Therefore the advantage of using
a multivariate geostatistical model may  be justified because such
a model accounts for the cross covariance structure as well as the
spatial dependence for each variable (C and f). The multivariate geo-
statistical model takes into account the relationship between the
catch in a given location (s) and the fishing effort at another loca-
tion (s′) and vice versa. However, the cpue1 index is a function of
C and f, in particular a function of C/f; and so it is questionable
if it would still be advantageous to use a bivariate model for C
and f instead of a geostatistical univariate model for the quantity
C/f.

To examine these two analytical options, a geostatistical sim-
ulation was performed comparing two model possibilities: a
univariate approach considering the ratio between catch and effort;
and a bivariate approach (Gelfand et al., 2004) that modeled
catch and effort simultaneously. In both approaches temperature
is considered as a covariate. After adjusting the univariate model,
interpolations for the unobserved quadrats were calculated. When
interpolating the ratio between catch and effort it is only possi-
ble to estimate the first—that is cpue1—of the three indices shown
above. The bivariate model was also adjusted, interpolations were
calculated for the catch and effort variates, and then cpue1 was
estimated.

The main purpose of this paper is to use a simulation study to
perform comparisons based on different scenarios:

• the behavior of cpue1 estimates, calculated after fitting both mod-
els; and

• cpue1 estimates calculated after fitting the univariate geo-
statistical model using observed estimates that are obtained
only through observed data, not predicting for unobserved/
unreported quadrats.

The paper’s presentation of a simulation study that addresses the
respective outcomes of a univariate and a multivariate approach
to cpue index imputation should provide a useful contribution to
fishery science.

2. Material and methods

A simulation study was  employed to compare a univariate
model for the ratio between catch (C) and effort (f) and a bivari-
ate model for catch and effort, for estimating the cpue1 index for a
given region.

2.1. Spatial univariate model (SUM) for C/f

The spatial univariate model (SUM) for the ratio between catch
(C) and effort (f) is given by:

Y(s) = X(s)  ̌ + �w(s) + �2u(s), (1)

in which Y(s) = ln((C/f)(s)), X is the design matrix containing the
covariates effect, w(·) follows a Gaussian process with mean 0 and
variance 1, and u(s) ∼ N(0,1), and the correlation function adopted
was the exponential �(d) = exp(− �d). The � parameter of this
function determines how quickly the correlation drops to zero. Con-
sidering that Y = (Y(s1), . . .,  Y(sn)) forms a partial random sample of
the Gaussian process {Y(s) : s ∈ G}, the joint distribution of Y(s1), . . .,
Y(sn) is n-variate normal, that is, Y ∼ Nn(X�, �2R + �2In), in which
Rii′ = �(si, si′ ) and In is the n order identity matrix. We  have also
considered the temperature (temp) as a covariate; thus the ith line
of matrix X� is given by ˇ0 + ˇ1 temp(si). The joint distribution con-
sidered a function of the parameters through observation; thus the
likelihood of the SUM model may  be expressed as:

L(ˇ, �, �2, �2|y) = (2�)−n/2|�2R + �2I|−1/2

× exp
(

−1
2

[y − X�]T [�2R + �2I]
−1

[y − X�]
)

.

As shown in the geostatistical literature, it has been assumed that
the SUM model parameters are prior independent; that is, the joint
prior of the parameters is given by the product of the individ-
ual priors of each parameter and informative priors were adopted
for �2 and �2, in other words, inverse gamma  priors, �2 ∼ IG(a� ,
b�), �2 ∼ IG(a� , b�). According to Banerjee et al. (2004),  inverse
gamma  is a usual candidate for these parameters; in order to fix
the hyperparameters of this prior their prior means were set in the
minimum-squares estimates of the model variance ( �̂2) without
the spatial component adjusted to the observed data with infi-
nite variance. For example we fixed E(�2) = �̂2/2 and V(�2) =∞
as the mean and the variance of the inverse gamma distribu-
tion, with parameters a� and b� given by E(�2) = b� /(a� − 1) and
V(�2) = b2

�/((a� − 1)2(a� − 2)), so we  get the values of a� and b� .
And for the � parameter of the correlation function exponential, a
gamma  prior, frequently utilized, was  adopted: � ∼ G(a� , b�), with
high prior variance, and a mean such that when the correlation
is 0.05, the d0 value (effective range) is equal to half of the maxi-
mum  distance (max.dist) between observed locations. This gives us
E(�) ≈ 6/max.dist,  as shown in Appendix A. This prior reflects the
belief that for distances larger than max.dist/2 the spatial correla-
tion is close to zero. Parameter � = (ˇ01, ˇ02)′ received a normal
bivariate prior with mean 0 and variances matrix �2

ˇ
I2, �2

ˇ
= 100

(flat prior).
Following the Bayesian approach, the joint posterior distribu-

tion is proportional to the product of likelihood by the prior, that
is:

�(ˇ, �2, �2, �|y) ∝ |�2R + �2I|−1/2

× exp
(

−1
2

[y − X�]′[�2R + �2I]
−1

[y − X�]
)

× �(ˇ)�(�2)�(�2)�(�) (2)

As it is not possible to get posterior summaries directly from a
joint posterior distribution (Eq. (2))  it is necessary to use Monte



Author's personal copy

J.C. Pereira et al. / Fisheries Research 121– 122 (2012) 115– 125 117

Carlo Markov Chain (MCMC) algorithms (Gamerman and Lopes,
2006). Conditional complete distributions are necessary for the
implementation of MCMC  algorithms, as shown in Appendix B.
The models were run using WinBUGS software (Spiegelhater et al.,
2002).

2.2. Spatial bivariate model (SBM) for catch and effort

The following bivariate spatial model, proposed by Pereira et al.
(2009) for the catch and effort joint modeling, was  compared to a
bivariate model without a spatial component.

The bivariate model, with vector Y(s) of p = 2 dimension, was
considered for joint modeling in which Y1 = ln(f) and Y2 = ln(C),
where ln is the natural logarithm. Thus, it was assumed that the
observation vectors at sample points Y(si), i = 1, 2, . . .,  n form a par-
tial realization of the stochastic process {Y(s) : s ∈ G}, G ⊂ 
 2 and
that the random vector Y(·) follows a Gaussian process. A model for
these data is described as:

Y(s) = X(s)  ̌ + v(s) + ε(s), (3)

in which v(s) follows a normal bivariate distribution with a vector of
means (0), and a covariance matrix 2 × 2; ε(s) is a white noise vector
with normal distribution, covariances matrix D, of dimension 2,
diagonal, so that Djj = �2

j
; and X(s)� represents the trend of the

process in which X(·) is a design matrix, describing the possible
covariate.

The model used for the covariance structure of the v(s) com-
ponent of Eq. (3) was the linear coregionalization model proposed
by Gelfand et al. (2004) and used by Pereira et al. (2009).  For this
model one has a range (i.e., the distance beyond which there is
practically no spatial correlation between data points) associated
with each component of Y(·) if monotonic and isotropical correla-
tion functions are used. The correlation function was  an exponential
function, both for catch and for effort: �j(d) = exp(− |�jd|), j = 1, 2, in
which d is the distance between any two points s, s′. The linear
coregionalization model for the v(s) = Aw(s) process may  be re-
parameterized according to a conditional approach. Gelfand et al.
(2004) shows that there is an equivalence between model (3) writ-
ten in the unconditional way and the conditional way. Thus, the
model for the two variates, and taking into consideration the covari-
ate, temperature (temp), written in the conditional way  is given
by:

Y1(s) = ˇ01 + ˇ11 temp(s) + �1w1(s)
Y2(s)|Y1(s) = ˇ02 + ˇ12 temp(s) + ˛Y1(s) + �2w2(s) + �2u2(s)

. (4)

From now on the model in Eq. (4) will be called the spatial bivariate
model (SBM).

Using the conditional approach the likelihood may  be shown as:

L(Y|�) = L(Y1|�1)L(Y2|Y1, �2),

in which � is the parameter vector of the model; �1 = (ˇ1, �2
1 , �1)′,

is the parameter vector referring to the first equation of model
(SBM); and �2 = (ˇ2, �2

2 , �2, �2
2 )′ referring to the second line in Eq.

(4). So,

L(ˇ1, �1, �2
1 |y1) = (2�)−n/2|�2

1 R1|−1/2 exp{−(1/2)[y1 − X1ˇ1]T

× [�2
1 R1]

−1
[y1 − X1ˇ1]},

in which X1 is the design matrix for Y1(s), �1 is the covariate coef-
ficient vector and (R1)ii′ = �1(si, si′ ).

L(ˇ2, �2, �2
2 , �2

2 |y2, y1) = (2�)−n/2|�2
2 R2 + �2

2 I|−1/2

×exp
{

−1
2

[y2 − X2ˇ2]T [�2
2 R2 + �2

2 I]
−1

[y2 − X2ˇ2]
}

in which X2 is the design matrix for Y2(s), �2 is the covariate coef-
ficients vector and (R2)ii′ = �2(si, si′ ).

Using the Bayesian approach, it is necessary to incorporate rel-
ative uncertainty to the parameters of interest, thus assuming
independence; the prior joint distribution is given by the product
of the prior of each parameter. For �1 and �2 vectors, multivari-
ate normal prior were attributed, with a vector of 0 mean and
covariances matrix I�2

ˇ
, with �2

ˇ
fixed at a high value, �2

ˇ
= 100

(flat prior). Inverse gamma  prior were used in parameters �2
1 and

�2
2 , with averages equal to the minimum-squares estimates from a

spatially independent model for each variate, Y1(s) and Y2(s), with
infinite variance, that is, �2

j
∼IG(a�j

, b�j
), with a�j

= 2. An inverse

gamma  prior was  also used for �2
2 , �2

2∼IG(a�2 , b�2 ), with infinite vari-
ance (a�2 = 2) and average (br2 ) equal to the estimate of minimum
squares. According to Schmidt and Gelfand (2003),  Banerjee et al.
(2004) and Paez et al. (2005), Gamma  priors were associated with
parameters �1 and �2, �j∼G(a�j

, b�j
), whose hyperparameters a�j

and b�j
were fixed in the same way  as presented for the univari-

ate model. Parameterization of prior distributions follows Gelman
et al. (2004).

Dealing with the conditional model expressed by Eq. (4), and
due to the independence of its likelihood function and with the use
of the previously specified prior, the joint posterior distribution for
the parameters is given by �(�|y1, y2) = �(�1|y1)�(�2|y2), in which

�(�1|y1) = �(ˇ1, �2
1 , �1|y1) ∝ L(ˇ1, �2

1 , �1|y1)�(ˇ1)�(�2
1 )�(�1),

(5)

and

�(�2|y2) = �(ˇ2, �2
2 , �2

2 , �2|y2, y1) ∝ L(ˇ2, �2
2 , �2

2 , �2|y2, y1)

× �(ˇ2)�(�2
2 )�(�2

2 )�(�2). (6)

Since the posterior distributions (5) and (6) do not have a closed
analytical form, MCMC  methods (Gamerman and Lopes, 2006) were
used in order to get a sample of the joint posterior distribution of
the parameters. For computational implementation of these algo-
rithms it is necessary to know the complete posterior conditional
distributions of all the parameters of interest present in the model,
and so Appendix C shows complete conditional distributions of
each parameter (SBM).

While obtaining samples from the joint posterior distribution
of the parameters of both the SBM and the SUM models, we used
the computer program WinBugs (Spiegelhater et al., 2002) and
we used chain sizes of 55,000 in which the first 5000 were dis-
carded (burn-in); and following on from this on observations of
50 in 50 (thinning) were stored in order to minimize autocorrela-
tion problems, yielding a sample size of 1000. The verification of
the chains convergence was  performed by graphical analysis of its
trace.

Clues of convergence are obtained when, starting from a given
number of iterations of the MCMC  algorithm, the traces of the two
chains (which are generated from different seed values) overlap
and start to oscillate around a constant value.

2.3. Simulation

The simulation was  performed in the same way  as presented
in Pereira et al. (2009).  Firstly temperature values in a regular
grid (10 × 10) were simulated taking into account a gradient that
allowed the temperature to vary between 0 ◦C and 25 ◦C. Consider-
ing four different scenarios, fifty data sets simulating the logarithm
of the fishing effort (Y1) as well as those of the logarithm of the
respective catches (Y2) were performed. Temperature values were
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used in a Gaussian process mean, using Y1 and Y2 according to Eq.
(4). The scenarios were:

(a) low correlation between catch and effort, and low spatial cor-
relation;

(b) strong correlation between catch and effort, and low spatial
correlation;

(c) low correlation between catch and effort, and strong spatial
correlation; and

(d) strong correlation between catch and effort, and strong spatial
correlation.

Each of the 100 points from the regular grid (10 × 10), which is
shown in Pereira et al. (2009),  represents a reference point within
a quadrat where fishing had occurred (in other words, catch and
effort). It should be noted that in a given region divided into
quadrats and inhabited by a fish stock, fishing is not necessar-
ily observed in all quadrats (Walters, 2003). In our study, data
were simulated in all quadrats; so they represent the effort and its
respective capture that would be observed had the fisheries been
observed in all of them.

As catch and effort are considered random variates in each
quadrat they might present different results; and for this pur-
pose 50 data sets were generated to simulate different realizations
of these variates in each quadrat. As a result, in each simulated
run there were 100 pairs of effort and catch data, and from
these a stock-abundance index was calculated, given by cpue1 =
(1/100)

∑100
i=1 Ci/fi. The resulting value is the true value of the index

for the present realization. Then, for each realization a sample size
of 85 effort and catch pairs and a second sample size of 76 pairs
were randomly selected. That is, two situations were considered:
one in which 15% of the quadrats were considered as not observed
and another in which 24% of the quadrats were considered as not
observed. The simulated points considered as observed were pre-
established: they were the same for the 50 realizations, and for
this a Thomas process was used (Reis, 1998) to mimic  a real situ-
ation in which the fishing spatial pattern is generally aggregated
(Anganuzzi, 2004), in the same way as presented in Pereira et al.
(2009). Note that when considering only at the observed loca-
tions (i.e., locations used for model fitting) in both situations, the
maximum observed distance between the points remains approx-
imately the same (14 units).

For each observed set (85 and 76 points) in each of the 50 real-
izations, two models were applied:

• SBM model from which data were simulated. The response vari-
ates are the logarithm of the fishing effort (Y1) and the logarithm
of the catch (Y2); and

• SUM model. In this case the response variate is the logarithm
of the ratio between catch and effort, and the generated data
are from Y1 andY2 in order to enable fitting of the SUM model.
Thus, the difference Y = Y2 − Y1, was considered, which results in
Y = ln(C/f) due to their logarithmic property. We  are only able to
generate Y1 and Y2 by simulation, whereas the variate of interest
is ln(C/f).  The model was fitted for this variate because several
papers (such as Nishida and Chen, 2004; Matsunaga et al., 2006)
use Y when modeling data on effort and catch.

For both models the Bayesian approach was used for the fit-
ting (i.e. parameters estimation) via MCMC  methods. From this,
a sample of the joint posterior distribution of the parameters is
obtained:

Table 1
Potential scale reduction (Gelman and Rubin, 1992) of two posterior chains of the
parameters, starting from distinct initial values; using the univariate model, under
a  scenario of strong correlation between catch and effort, and strong spatial corre-
lation; and for a sample size of 85 of the ‘observed’ quadrats.

Parameter Point estimate (R̂) 97.5% quantile

�2 1.0108 1.0204
�2 1.0651 1.0871
ˇ0 1.0002 1.0014
ˇ1 1.0026 1.0115
�  1.0024 1.0025

• when fitting the SBM model, for the unobserved quadrats samples
were obtained from the catch and effort predictive distribution;
and

• when fitting the SUM model, for the unobserved quadrats sam-
ples of predictive distribution of the ratio between catch and
effort were obtained.

For each predicted set in the unobserved sites, those values con-
sidered as observed (C and f simulated values used for model fitting)
were added to its respective set, resulting in a data set composed
of predicted and observed values, which were used in order to esti-
mate cpue1. So, for example, estimates for cpue1 using the SBM
were obtained by cpue1 SBM = 1/(m + K)

∑m+K
i=1 Ci/fi, where (Ci,fi),

i = 1, 2, . . .,m, m = 76 or 85, are the observed pairs; and (Ci,fi), i = m + 1,
. . .,  m + K,where m + K = 100, are the predicted pairs via the SBM
model. Similarly estimates were obtained using the SUM model;
however with that model we have predictions of C/f instead of pairs
(C, f). A sample of estimates was  obtained using each applied model,
and the median of the sample gave a point estimate. Thus, for each
one of the 50 realizations a point estimate for cpue1 was obtained
after application of the SBM model, and another was  obtained after
application of the SUM model. We  refer to the cpue1 estimates
obtained after the fitting and predictions by the two models as
‘adjusted cpue1 estimates’ and those obtained just from data con-
sidered as observed ‘sampling-based estimates’ (or sampling-based
cpue1), that is, cpue1 sampling based = (1/m)

∑m
i=1Ci/fi, m = 85 or 76;

and they are further compared via calculation of the mean square
error (MSE).

3. Results

Fig. 1 represents the traces of two posterior chains generated
from distinct initial values for the parameters of the SUM model.
Thus this model was  implemented with a sample size of 85 of
the ‘observed’ quadrats, under the fourth (d) of the scenarios of
correlation-intensity combinations outlined above, namely strong
correlation between catch and effort, and strong spatial correla-
tion. The graphs allow us to see that there are convergence of the
chains. The same was noted for the other correlation-intensity-
combination scenarios, and also for the re-application of this model
with a sample size of 76 for the four simulated scenarios (Pereira,
2009). For the SBM model, applied with a sample size of 85 and 76
of the ‘observed’ quadrats, a convergence of chains was also diag-
nosed for all of the scenarios; however, the chains in these cases
present a similar behavior so are not shown here.

In addition to the graphical analysis of the traces of chains gen-
erated from the model input parameters, the Gelman and Rubin
(1992) convergence criterion was also used for verification of
convergence. This criterion is based on techniques of analysis of
variance and consists of comparing the dispersion between and
within the chains. Using at least two chains, one calculates the
potential scale reduction (R̂). The convergence can be evaluated
by the proximity of R̂ to 1. Gelman (1996) suggested accepting
convergence when the value of R̂  is below 1.2. Table 1 shows the
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Fig. 1. Trace of two posterior chains of the parameters (represented in gray and black), starting from distinct initial values; using the univariate model, under a scenario of
strong  correlation between catch and effort, and strong spatial correlation; and for a sample size of 85 of the ‘observed’ quadrats.

Gelman and Rubin (1992) potential scale reduction of the SUM
model parameters whose chains were presented in Fig. 1. According
to this criterion the convergence is acceptable, since the R̂ values are
below 1.2. Using the same criterion, the convergence of the chains
of the SUM model parameters was diagnosed in other simulated
scenarios, and it was also diagnosed for the parameters of the SBM
model in the four simulated scenarios.

Fig. A.1,  Appendix D [for a sample size of 76 and scenario (d)]
shows 95% credible intervals together with the values used in the
simulation for the parameters of the SBM model. Almost all inter-
vals include the values of the parameters used in the simulation.
This indicates that the parameters are well estimated, which is
important to verify since they are inferences from the estimated
model. There are no true values of parameters for the SUM model
because the data were generated from the SBM model and, thus, it
is impossible to see if 95% intervals cover (enclose) the true values.

Fig. 2 presents a graph with values for cpue1 shown rela-
tive to sampling-based estimates and to adjusted cpue1 estimates
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Fig. 2. The cpue1 values relative to sampling-based estimates (in white) and
adjusted estimates (in black) obtained using the univariate model; under a scenario
of strong correlation between catch and effort, and strong spatial correlation; and
for  a sample size of 85 of the ‘observed’ quadrats.

from the univariate model, under the fourth correlation-intensity-
combination scenario (i.e. d).

Fig. 2 shows that the sampling based estimates are a little more
scattered in relation to the true values for cpue1 than are the
adjusted estimates (which are closer to the straight line shown in
the graph). This is reflected in Table 2 where, just for the fourth
correlation-intensity scenario (i.e. d), the adjusted estimates using
the SUM model are better than the sampling-based estimates.

Fig. A.2 in Appendix E shows histograms of the adjusted cpue1
estimates and their respective medians arising from the applica-
tion of the univariate model, together with the sampling-based
estimates and the true value for cpue1. The histograms provide a
description of the uncertainty associated with the adjusted esti-
mates as a representation of cpue1.

Table 2 provides a comparison of the MSEs of the cpue1, and the
estimates that were calculated after fitting the univariate model
[for which the response variate is the logarithm of the C/f (SUM
model)], with the MSEs of estimates calculated after application of
the SBM model [in which the response variate is the pair (f, C)].
The table shows that, despite the MSEs of the SBM model being
lower for the 4 scenarios, the differences between the MSEs in esti-
mates from both models are very small. This is also noted in Fig. 3

Table 2
Mean square error (MSE) of the adjusted estimates and sampling-based estimates
for  each one of the scenarios using the spatial bivariate model (SBM) and spatial
univariate model (SUM) with a sample size of 85 of the ‘observed’ quadrats.

Scenarios Adjusted Sampling-
based
estimates

SUM SBM

(a) 35.4559 35.1504 32.6330
(b) 475.4903 473.4891 426.4459
(c) 5.2845 5.2285 3.5032
(d) 245.6568 242.7253 283.2965

(a) low correlation between catch and effort and low spatial correlation;
(b) strong correlation between catch and effort and low spatial correlation;
(c) low correlation between catch and effort and strong spatial correlation; and
(d)  strong correlation between catch and effort and strong spatial correlation.
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Fig. 3. Differences between the adjusted estimates of cpue1 using univariate and
bivariate models in each simulation, under a scenario of strong correlation between
catch and effort, and strong spatial correlation, and for a sample size of 85 of the
‘observed’ quadrats.
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Fig. 4. Differences between the adjusted estimates of cpue1 using univariate and
bivariate models in each simulation, under a scenario of strong correlation between
catch and effort, and strong spatial correlation, and for a sample size of 76 of the
‘observed’ quadrats.

which shows that the differences between the estimates obtained
from both models are quite small and distributed around zero. Fur-
thermore the SBM model is more complex, because in this case it
involves the estimation of 10 parameters, while the SUM model has
five parameters.

When more points were left for prediction (24 points; or, in
other words, when the models were adjusted using a sample size

Fig. 5. Definition of the coordinate system for computing the distances between
two  5◦ × 5◦ areas (the distance between 5 degrees of latitude at the Equator is set to
1).  The five sub-areas were adopted by the Indian Ocean Tuna Commission (2002)
for standardizing yellowfin-tuna longline-cpue data in the Indian Ocean.

(figure from Nishida and Chen, 2004).

Table 3
Mean square error (MSE) of the adjusted estimates and sampling-based estimates
for  cpue1 for each one of the scenarios, through the use of the spatial bivariate
model (SBM) and spatial univariate model (SUM) with 24 grid-data points left for
prediction.

Scenarios Adjusted Sampling-
based
estimates

SUM SBM

(a) 53.6231 53.5565 44.8562
(b)  1183.7940 918.5675 692.1623
(c)  24.8095 25.1901 17.0452
(d)  1397.8230 1322.8330 938.0567

(a) low correlation between catch and effort and low spatial correlation;
(b) strong correlation between catch and effort and low spatial correlation;
(c) low correlation between catch and effort and strong spatial correlation; and
(d)  strong correlation between catch and effort and strong spatial correlation.

of 76), the MSEs calculated from the estimates for cpue1 (Table 3)
increased in relation to those calculated from a sample size of 85
(Table 2).
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Fig. 6. Spatial distribution of the effort (a) and catch (b) data. The variate values are proportional to circle diameter, and the 4 different gray tonalities represent the division
of  the observations, sorted in ascending order, into four parts according to quartiles (1◦ , 2◦ and 3◦) increasing in order from the lightest to the darkest.
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Fig. 7. Scatterplot of ln(catch) × ln(effort).

Table 2 shows that with a sample size of 85, in scenario (d), the
adjusted estimates of cpue1 using the SUM and SBM models were
better than the sampling-based estimates. However, this did not
occur with a sample size of 76 (Table 3), and for this sample size
for all scenarios, the sampling-based estimates showed the lowest
values of MSE  compared with MSEs for the adjusted estimates via
the SUM and SBM models.

Fig. 4 shows the difference between the adjusted estimates that
were obtained using both models in a scenario of strong correlation
between catch and effort, and strong spatial correlation, and with
a sample size of 76 of the ‘observed’ grids. Adopting a sample size
of 85 ‘observed’ grids produced a similar result – that is, the differ-
ence between estimates from both models is very small, distributed
around zero, producing MSEs that were very close (Table 3).

3.1. Application

An application of the theory was carried out using data for 2001
from Japanese yellowfin tuna (T. albacores) longline fishing in the
Indian Ocean. The data set consists of the variates fishing effort
(expressed in the number of hooks) and catch (in number of indi-
viduals) per year for a 5◦ × 5◦ quadrat. There were 118 pairs of
fishing effort and catch data available and for each pair there was
a reference point representing the quadrat where the fishery took
place. The sub-areas adopted by the Indian Ocean Tuna Commis-
sion Working Party on Tropical Tunas (WPTT) (IOTC, 2002) were
also incorporated in the data. For ecological reasons (habitat), sub-
areas 1, 2, 3, 4 and 5 indicated in Fig. 5 were used as covariates
(cofactor, i.e., categorical factor) because they were needed to help
to explain the effort and catch variability. A similar example using
a cofactor in a geostatistical model may  be seen in Oliveira et al.
(2006),  where they utilize three different regions when modeling
soil calcium content.

Fig. 5 also shows the 5◦ × 5◦ quadrats where the fishery took
place. A system of coordinates was set for the studied area, such
that the point 20◦E, 40◦S was adopted as the origin, and 5-degrees
of latitude at the Equator represented a unit of distance. In this
way, coordinates (x,y) were obtained for the central points of each
quadrat (more details can be found in Nishida and Chen, 2004).

Fig. 6 shows the spatial distribution of catch and effort data
where a descriptive analysis of the data showed that the statistical
distributions of the effort and catch variates were quite asymmet-
rical, and so data were converted to a log scale.

The ln(catch) × ln(effort) presented a linear correlation of
r = 0.7 (n = 118, P < 0.001). Fig. 7 shows the scatterplot of
ln(catch) × ln(effort).
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Fig. 8. Empirical semivariograms: (a) of the residual of a linear model for ln(effort)
as  a function of the cofactor habitat; (b) of the residual of a linear model for ln(catch)
as  a function of ln(effort) and habitat; and (c) of the residual of a linear model for
ln(catch/effort) as a function of the habitat.

In order to determine the spatial dependence in the data, Fig. 8
presents empirical semivariogram residuals obtained from fitting a
linear model to the variates: ln(effort), removing the habitat effect;
ln(catch) removing the effects of ln(effort) and habitat effect; and
ln(catch/effort) removing the habitat effect.

It was observed that the catch and effort data exhibit spatial
dependence and the data set is in agreement with the fourth (d)
of the scenarios of the simulation study. The variates are strongly
correlated, there is spatial correlation, and spatial correlation for
the variate ln(catch/effort) is also observed.

The data were subjected to the models used in the simulation
study (SBM and SUM), incorporating sub areas Ai, i = 1, 2, 3, 4 and 5
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Table 4
Deviance Information Criterion for the spatial bivariate model (SBM), spatial bivari-
ate  model without habitat (SBMSH), the spatial univariate model (SUM) and the
spatial univariate model without habitat (SUMSH) for sample sizes of 90 and 100.

Sample size Model

SBM SBMSH SUM SUMSH

n = 100 577.568 583.3 222.876 225.7
n  = 90 498.490 503.9 179.792 183.8

Table 5
Mean square of the predicted values of catch rate using the spatial bivariate model
(SBM) and spatial univariate model (SUM), for sample sizes of 90 and 100.

Sample size Model

SBM SUM

n = 100 1.49e−05 1.59e−05
n  = 90 2.54e−05 2.56e−05

(shown in Fig. 5), as a covariate. The modeling adopted a Bayesian
approach as in the simulation study, and the Deviance Information
Criterion (DIC) (Spiegelhater et al., 2002) was used to compare the
fit of the models—smaller values of DIC indicate a more parsimo-
nious model.

When running the models with the data set of 118 effort and
catch pairs, the data utilized were adjusted as shown in the sim-
ulation runs. Sample sizes of 90 and 100 data pairs (representing
omissions of 15% and 24% of the data set) were adopted for the infer-
ence process, enabling an evaluation of the predictive capacity of
the models.

Table 4 presents the DIC values for the SBM and SUM models,
run using the 90 and 100 sample sizes. It shows that for both sample
sizes the SUM model provided lower DIC values, indicating a better
fit.

In order to verify the contribution of the habitat the SBM and
SUM models were also fitted without this cofactor (called SBMSH
and SUMSH). The obtained DIC values are shown in Table 4. This
allowed us to verify that the factor ‘habitat’ contributed to explain
the variates C, f and C/f; higher DIC values were obtained from the
respective models without this cofactor than from the models with
it.

After fitting the models for predicting distribution, the C/f values
were estimated for those locations which were excluded from the
inference process. To identify the model with the highest predictive
capacity, the MSE  of each model was calculated for each sample
size.

Table 5 shows the MSE  values for the predictions using the two
adjusted models and the two sample sizes. Smaller values indicate
better predictions. The table indicates that even though the SBM
model presents lower MSE  values, the values are quite close for
both models.

For this data set the SUM model presented the best fit. However,
in terms of predictive capacity both models presented very close
results, indicating that there is no advantage in adopting the SBM
model in preference to the SUM model when predicting C/f and,
consequently, estimating cpue1.

4. Discussion

The fact that, under the fourth (i.e. d) of the correlation-intensity
scenarios and with a sample size of 85, the fit using the univariate
and bivariate models gives better estimates than the sampling-
based estimates, may  be due to the strong spatial correlation in
the simulated data in this scenario, which was taken into consid-
eration when calculating the adjusted estimates. Moreover, these
results indicate that for this scenario it is an advantage to use the

adjusted estimates; and besides, when using adjusted estimates,
the credible intervals for cpue1 may  be directly obtained from the
posterior samples from the cpue1 estimates. Thus, a description of
the uncertainty is obtained.

Estimates obtained after applying SBM and SUM models are
quite close as both are obtained in the first instance through a
common set of 85 observed effort and catch pairs; only 15 differ-
ent values are predicted by both models. However, the 15 values
predicted by the SBM model do not make the cpue1 estimates
calculated after fitting the SBM model better than the estimates
obtained after fitting the SUM model. Perhaps the estimates cal-
culated after adjustment of the SBM model are not better because
with this model two  variates (effort and catch) must be predicted,
while with the SUM model just one variate (C/f) is predicted. Thus,
uncertainties are associated with effort and catch prediction in the
SBM model while with the SUM model the uncertainty is just asso-
ciated with the ratio between catch and effort. Besides, Bognola
et al. (2008) and Fonseca (2008) detected a better performance of
these models when applying bivariate geostatistical models (when
compared to univariate models) for making predictions in cir-
cumstances when the observations of the variates are co-located.
Naturally in fisheries, catch and effort data are observed in the same
locations, as effort causes catch; so, they are co-located. Due to the
very nature of this type of observation it is not surprising that the
bivariate model is not better than the univariate one.

In the yellowfin tuna application, when the number of predi-
cated quadrats increased from 15% to 24% the MSEs of the adjusted
estimate also increased. This is expected because more ‘unob-
served’ quadrats need to be predicted, and hence the uncertainty
will be greater.

In the simulation, when comparing the sampling-based esti-
mates with the adjusted estimates that were calculated after fitting
the SUM model, one notes that for the sample size of 85, as previ-
ously mentioned the adjusted estimates are better for the fourth
(i.e. d) of the correlation-intensity scenarios, being advantageous
in this case to adjust the model to estimate cpue1. However, with
a sample size of 76, Table 3 shows that no advantage in using
the adjusted estimates for cpue1. In other words, the MSEs of the
adjusted estimates are higher than the MSEs of the sampling-based
estimates. Using a sample size of 76 for the SUM model fitting,
perhaps the number of points left for prediction (24) is so high
that predictions are worse and the adjusted estimates are not bet-
ter. Nonetheless, if the characteristics of the sample allows the
spatial model to fit well—even if the number of observations is
less than 85% of the total—it is possible that even better esti-
mates are obtained using the spatial model compared to estimates
based on sampling. It may  be useful to use adjusted estimates in
order to obtain more precise estimates for cpue1. However, caution
is needed when predicting in non-observed quadrats, especially
when there are few observed and/or available sampled points for
fitting the model. A small sample may  not provide good estimates
of model parameters—especially those associated with the spatial
component, which are more difficult to estimate. A poorly deter-
mined covariance structure can lead to poor predictions; and bad
predictions for the unobserved locations can lead to worse esti-
mates.

The estimates obtained after fitting the univariate and bivari-
ate models present values which are very close for a sample size
of 85. Despite the higher scatter in estimates resulting from fit-
ting the two  models with a sample size of 76, the estimates remain
close to each other. It suggests that there is no advantage in using
the bivariate model in preference to the univariate one when
estimating cpue1. In addition to both models providing similar
results, the number of parameters to be estimated in the SBM
model is greater than in the SUM model, i.e. the SUM model is less
complex.
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Fig. A.1. The 95% credible interval of parameters and values used in the simulation of data (horizontal line); under the scenario (d) (strong correlation between catch and
effort  and strong spatial correlation); and for the bivariate model applied for a sample size of 76 ‘observed’ quadrats.
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Fig. A.2. Histograms of the adjusted estimates obtained using the univariate model, for a sample size of 85 ‘observed’ quadrats, and referring to 5 of the 50 cpue1 samples.
Each  median is shown in black, each sampling-based estimate in gray, and the true value is dashed. The scenario for the model assumed strong correlation between catch
and  effort, and strong spatial correlation.

Despite no good grounds for fitting the SBM model when the
main objective is to estimate cpue1, this model has other advan-
tages. For example, it allows the preparation of separate prediction
maps for effort and catch, thus providing scope to adopt a different
function of catch and effort as an alternative index to cpue1.

The simulation study has shown that:

(i) Under scenario (d) of the correlation-intensity scenarios, when
15% of the observations were left for prediction, the adjusted
estimates using the SUM and SBM models are better than
sampling-based estimates.

(ii) Leaving more points—24%—for prediction, there is no advan-
tage in using adjusted estimates rather than sampling-based
estimates for cpue1.

(iii) In general, estimates for cpue1 obtained after fitting SBM and
SUM models are very close, indicating little advantage in using

the SBM model; the SUM model might actually be preferable
because it is a simpler model.

Another possibility that could be explored in the simulation would
be to study a catch univariate model and another independent for
the fishing effort; then, with these models cpue1, cpue2 and cpue3
could be estimated and compared with estimates obtained after
adjusting the SBM model. It might be expected that in cases show-
ing strong correlation between catch and effort the SBM model
would present better results.

It would also be interesting to compare, through simula-
tions, the behavior of the SUM model, SBM model and the
sampling-based method for estimating cpue in a scenario where
the sampling is biased, for example when the fishing targets areas of
greater abundance. Simulations involving this scenario might show
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improvements over the sampling-based method in more general
correlation structures.

In both models investigated in this paper it is assumed that the
data follow a Gaussian process. However, when analyzing data from
fisheries it is common to find inflated zero-catch data. In such cases
different statistical approaches have been used, including the use
of generalized linear models, where different probability distribu-
tions can be assumed for catch or for cpue data. A review of some
of these approaches (ad hoc approach; using the Poisson; negative
binomial; and delta-type two-step distributions) can be found in
Shono (2008) where the author applied the Tweedie distribution
to catch-and-effort data for silky shark and yellowfin tuna.
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Appendix A.

The effective range d0 is obtained making
�(d0) = exp(− �d0) = 0.05. Taking natural logs we  have
−�d0 = ln(0.05) or −�d0 ≈ − 3, and so � ≈ 3/d0. Taking
d0 = max.dist/2, we get a prior E(�) ≈ 6/max.dist,  where max.dist
represents the maximum distance among the observed locations.

Appendix B.

Posterior complete conditional distributions of the parameters
of the univariate model for the ratio between catch and effort.

1. Posterior complete conditional distribution for � = (ˇ0, ˇ1)′

is bivariate normal �|�2, �2, �, y ∼ N(Bb, B), where B =
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Appendix C.

Posterior complete conditional distributions of the parameters
of the bivariate model for effort and catch.
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Appendix D. Credible intervals
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