Perfil geoestatístico de taxas de infiltração do solo

João Vitor Teodoro¹ Jefferson Vieira José²

1 - Doutorando em Estatística e Experimentação Agronômica (ESALQ/USP).

2 - Doutorando em Irrigação e Drenagem (ESALQ/USP).

RESUMO

O conhecimento sobre a variabilidade de infiltração do solo é de fundamental importância para o uso adequado da área e correta irrigação. Neste trabalho é realizada a análise geoestatística de uma área com solo Nitossolo Vermelho Distroférrico no estado do Paraná sob os aspersores de 3, 30, 60 e 120 mm de diâmetro. Foram coletadas 36 amostras, em que, mediram-se as taxas de infiltração (mm h⁻¹). Foram gerados quatro gráficos de krigagem fornecendo a visualização do comportamento espacial em cada aspersor e de sua variação.

INTRODUÇÃO

O conhecimento sobre a variabilidade de propriedades do solo é de fundamental importância no planejamento para o plantio e estratégias de irrigação. A visualização do comportamento geoestatístico dessas variáveis é de grande interesse, pois, possibilita uma ampla interpretação dos processos e propriedades.

O processo em que a água atravessa a superfície do solo é denominado infiltração. Sua importância está ligada ao escoamento superficial, podendo causar inundações e erosão. Com a infiltração da água no solo, há uma tendência de maior umidade em partes superiores e menos profundas do que naquelas mais inferiores.

A taxa de infiltração é o volume de água por unidade de área que atravessa o solo por tempo, é este fenômeno que será abordado neste trabalho diante um experimento com aspersores com bocais de diâmetros 3, 30, 60 e 120 mm.

MATERIAL E MÉTODOS

Área de estudo

Os dados foram coletados em uma área experimental no noroeste do Estado do Paraná no Centro Técnico de Irrigação (CTI), localizado na latitude 23°23' S e na longitude 51°57' W, com altitude de 504 m pertencente à Universidade Estadual de Maringá, município de Maringá. A classificação textural do solo é 122 g kg⁻¹ de areia, 121 g kg⁻¹ de silite e 757 g kg⁻¹ de argila (Nitossolo Vermelho distroférrico). A área de amostragem do CTI permaneceu por mais de dois anos em pousio.

Estratégia de amostragem no campo

A área foi dividida em 36 subparcelas de 2 x 2 m, sendo que no ponto central de cada subparcela realizou-se o teste de infiltração de água no solo utilizando o método de infiltrômetro de anéis concêntricos de carga constante de acordo com a metodologia de COELHO et al., (2000) (Figura 1(c)). Com os resultados da lâmina de água acumulada no solo (I) em função do tempo de ensaio (t) obtiveram-se, por regressão linear, os parâmetros (k e α) do modelo de Kostiakov (I = k t^{α}). A taxa de infiltração da água no solo foi obtida derivando-se a equação da lâmina acumulada em relação ao tempo (TI = dIdt⁻¹). Para se obter o valor da taxa de infiltração básica de água no solo (Tib), atribui o valor de -0,01 cm h⁻¹ min⁻¹ correspondente a tangente de β igual a 1° :

$$Tib = k.\alpha \left[\frac{-0.01}{k.\alpha.(\alpha - 1)}\right]^{\frac{\alpha - 1}{\alpha - 2}}$$

Figura 1. Localização da área de estudo (a), croqui do grid de amostragem (b) e infiltrômetros de anéis concêntricos de carga constante (c).

Análises dos dados

Para as análises de dados, foi utilizada a linguagem e ambiente R, versão 2.11.1. (R. DEVELOPMENT CORE TEAM, 2010) Os métodos geoestatísticos foram implementadas utilizando funções disponíveis nas bibliotecas geoR (RIBEIRO e DIGGLE, 2001) e MASS (VENABLES e RIPLEY, 2002).

O conjunto de dados da taxa de infiltração básica obtidos nas áreas de amostragem foram submetidos à análise estatística descritiva, determinando os valores mínimos e máximos, média e coeficiente de variação.

Utilizou-se a família de transformações Box-Cox para encontrar a transformação mais adequada para alcançar o comportamento aproximadamente Gaussiano. Essa família depende diretamente de um parâmetro, que é o coeficiente de transformação dos dados. Na prática para um conjunto de dados, obtém-se um intervalo de confiança para que, caso inclua o valor 1, indica que a transformação dos dados não é necessária (BOX e COX, 1964).

Os dados foram analisados sob a abordagem de modelos geoestatísticos (DIGGLE e RIBEIRO JR., 2007) sob o paradigma frequentista da estatística.

RESULTADOS E DISCUSSÃO

Os dados foram avaliados segundo o teste de normalidade de Shapiro-Wilk e, conforme a Tabela 1, os dados, para os quatro diâmetros de aspersão, não apresentaram normalidade. Após a transformação dos dados (BOX e COX, 1964) conforme a Figura 2 houve normalidade.

Diâmetro do	Dados originais (Teste de		Dados transformados (Teste de		
	normalidade de Shapiro-Wilk)		normalidade de Shapiro-Wilk)		
bocal	W	p-valor	W	p-valor	λ
3 mm	0,8555	0,0002559	0,9576	0,1814000	0,40
30 mm	0,9328	0,0305100	0,9889	0,9708000	0,40
60 mm	0,9229	0,0153300	0,9815	0,7934000	0,30
120 mm	0,9122	0,0074980	0,9766	0,6305000	0,22

Tabela 1 - Testes de normalidade

Tabela 2 - Medidas descritivas dos dados transformados

Diâmetro do	Mínimo	Mávimo	Mádia	Coeficiente de	
bocal	WIIIIIIO	WIAXIIIO	Wicula	variação	
3 mm	6,006	33,700	20,820	20,9807	
30 mm	4,229	23,100	13,610	30,8887	
60 mm	3,310	14,310	9,291	28,2454	
120 mm	2,705	10,300	6,939	26,9947	

Diâmetro do bocal de 3mm

Diâmetro do bocal de 30 mm

Figura 2 - Perfis de verossimilhança do parâmetro da transformação Box-Cox

Figura 3 - Boxplot e histograma dos dados de taxa de infiltração a 3mm transformados

Figura 4 - Boxplot e histograma dos dados de taxa de infiltração a 30mm transformados

Taxa de infiltração (60mm)

Figura 5 - Boxplot e histograma dos dados de taxa de infiltração a 60mm transformados

Figura 6 - Boxplot e histograma dos dados de taxa de infiltração a 120mm transformados

Figura 7 - Apresentação da mensuração dos dados transformados nas respectivas coordenadas

Para ambos os diâmetros de bocas, foi utilizado o modelo exponencial para o semivariograma com parâmetros apresentados na Tabela 3. Os modelos exponenciais ajustados para os semivariogramas com parâmetros conforme a Tabela 3, são apresentados na Figura 8.

ıge
)3207
33250
24940
7584
)3 33 24

Tabela 3 - Modelos dos semivariogramas

Diâmetro do bocal de 3mm

Diâmetro do bocal de 60 mm

Diâmetro do bocal de 120 mm

Figura 8 - Semivariogramas

semivariograma, podemos

de

krigagens

apresentar as

Figura 9 – Krigagens

CONCLUSÃO

Por meio dos modelos

A taxa de infiltração se apresenta de forma mais irregular para aspersores com menor diâmetro de bocal e, para diâmetro de 120mm a área apresenta pequena e regular diferença de taxa de infiltração.

REFERÊNCIAS BIBLIOGRÁFICAS

BOX, G. E. P.; COX, D.R. An analysis of transformations, Journal of the Royal Statistical Society, Series B, 26, 211-252. 1964.

COELHO, R.D.; MIRANDA, J.H.; DUARTE, S.N. Infiltração da água no solo: parte I infiltrômetro de anéis versus infiltrômetro de aspersores. **Revista Brasileira de Engenharia Agrícola e Ambiental**, v. 4, n.2, Campina Grande, 2000.

DIGGLE, P. J.; RIBEIRO JÚNIOR, P. J. Model-based geostatistics. Londres: Springer, 2007. 230p.

R DEVELOPMENT CORE TEAM. R: A Language and Environment for Statiscal Computing. Vienna, Austria, 2010: R Foundation for Statistical Computing. Disponível em: http://www.r-project.org.

RIBEIRO JUNIOR, P. J.; DIGGLE P. J. geoR: A package for geostatistical analysis, RNEWS, Vienna, v.1, n.2, p. 14-18, 2001. ISSN 1609-3631.

SHAPIRO, S. S; WILK, M. B. An analysis of variancetest for normality (complete samples). **Biometrika**, v .52, n.2, 1965.

VENABLES, W.N.; RIPLEY, B. D. Modern applied statistics with S. Springer, Nova Iorque, 495 p. 2002