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ABSTRACT 
 
This paper presents an overview of geostatistical simulation with particular focus on 
aspects of importance to its application for quantification of risk in the mining 
industry. Geostatistical simulation is a spatial extension of the concept of Monte 
Carlo simulation. In addition to reproducing the data histogram, geostatistical 
simulations also honour the spatial variability of data, usually characterised by a 
variogram model. If the simulations also honour the data themselves, they are said to 
be ‘conditional simulations’. In a sense, simulations are an attempt at ‘sampling the 
unknown’ using constraints, e.g. statistical moments imposed by the data. Thus, in 
simulation, the requirements of stationarity are stricter than for linear geostatistics (for 
example, kriging). Geostatistical simulation is much more computationally 
demanding than geostatistical estimation. However, the exponential increases in 
computer processing speed, memory and data storage capacity have brought these 
tools into wide operational use in the mining industry over the past decade. We can 
generate many (in theory an infinite number) of simulated images. The question still 
remains: ‘how many simulated images are required to properly characterise a given 
domain?’ To answer this we must test the simulations to ensure they reasonably 
reproduce the input statistics. The validity of any subsequent use of the simulations 
for risk characterisation will be heavily dependent on how well our set of simulations 
characterises the intended ‘probability space’.  There now exists a plethora of 
methods  to generate simulations. The main methods in use in the mining industry 
today are discussed and we briefly introduce some less common approaches. Finally, 
the concepts of multivariate simulation (‘co-simulation’) are touched upon. In 
conclusion we summarise some of the uses of geostatistical simulations for 
application to risk quantification problems in the mining industry. 
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INTRODUCTION WHAT IS SIMULATION? 

 Venikov (1969) defines simulation as: This paper presents an overview of 
geostatistical simulation with a particular focus 
on aspects of importance to its application for 
quantification of risk in the mining industry, 
although touching on some other application 
areas. We deal here mainly with univariate 
simulation, that is, simulation of a single 
variable, however, we also briefly introduce 
the concepts of multivariate simulation (‘co-
simulation’). 

“…a system of models … having a definite 
resemblance to the first system (the original).” 

The word ‘model’ is derived from the Latin 
‘modus’, meaning ‘measure’ or ‘image’. In 
geostatistics we produce such models to 
represent the spatial distribution of variables. 
These models – or images – are a class of 
scientific model and thus should have 
properties that reflect attributes of the reality 
we are attempting to model.  This is a review paper intending to summarise 

the broad field of geostatistical conditional 
simulation. As such, an extensive bibliography 
is given. This bibliography goes beyond the 
papers cited in the text of our paper and is 
intended to give readers an entry to the 
primary literature. A good, modern overview 
of simulation is given by Chiles and Delfiner 
(1999). An excellent mathematically rigorous 
summary of algorithms is given by Lantuejoul 
(2001).  

MONTE CARLO SIMULATION 

Monte Carlo simulation is at the heart of 
geostatistical simulation. In essence, a Monte 
Carlo simulation generates a ‘realisation’ of a 
random process. A random process might be 
described by a histogram (‘distribution’) and a 
variogram or covariance (describing time-
domain or spatial autocorrelation). By drawing 
values sequentially from a histogram we can 
generate a possible sequence of values that is 
consistent with that histogram. Rules can then 
be applied to ensure that the variogram (or 
other correlation measure) is also reproduced. 
As a simple example, we might draw random 
values from a (very simple) histogram showing 
50% of outcomes as 1 and 50% as 0.  We will 
impose no autocorrelation (that is the 
variogram is implicitly ‘pure nugget’). The 
result is a Monte Carlo Simulation of a binary 
process with equally likely outcomes: tossing a 
coin! 

CONCEPTS 

MOTIVATIONS 

Good estimation has the goal of providing the 
‘best’ estimate for a block. This is achieved in 
kriging by reducing the estimation variance to 
a minimum for all possible linear weighted 
averaging schemes. This is a good argument to 
use kriging if mapping local ‘in-situ’ averages 
is the key issue. 

However, if we wish to deal with issues of 
variability, kriging has a downside. The means 
of achieving minimum estimation variance in 
kriging is to smooth the values. This is a 
consequence of the ‘information effect’ 
(Journel and Huijbregts, 1978) and implies that 
the estimated block values have a lower 
variance than the ‘true block’ values.  Such 
smoothing is necessary to minimise 
conditional bias. 

 

GEOSTATISTICAL SIMULATIONS 

A key property of geostatistical simulation 
models (as opposed to geostatistical 
estimation, or kriging, models) is that a family 
or system of model realisations is generated, 
i.e. not one ‘best estimate’. We produce a 
series of images, or ‘realisations’, that presents 
a range of plausible possibilities. The 
plausibility of these possible images is 
dependent on the assumptions and 
methodology employed in the simulation 
process. 

Making the blocks smaller results in the 
unrealistic smoothness of the blocks getting 
worse (see extensive bibliography warning 
about ‘small block kriging’ listed in Vann and 
Guibal, 2000).  
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Conditional simulation (CS) builds many such 
realisations of mineralisation, each 
reproducing the histogram and variogram of 
the input data, as well as honouring the known 
data points (hence ‘conditional’). There is a 
clear distinction between methods where 
conditioning is in-built, e.g. so-called 
‘sequential methods’ and those where 
conditioning takes place as a separate kriging 
step (e.g. turning bands). 

Each realisation is different to others because 
we always have uncertainty away from known 
data points (drill samples); hence individually 
such realisations are ‘simulations’ not 
estimates. 

Simulation has different objectives to 
estimation. The whole point is to reproduce the 
variance of the input data, both in a univariate 
sense (via. the histogram) and spatially 
(through the variogram or other covariance 
model). Thus simulations provide an 
appropriate platform to study any problem 
relating to variability, for example risk 
analysis, in a way that estimates cannot.  

At point level estimates honour the known data 
(this is a property of point kriging), but they 
don’t reflect the variability between points – 
because of necessary smoothing. To contrast to 
this, a simulation has the same ‘character’ as 
the true profile: the histogram and variogram 
of a simulation are in agreement with those of 
the data.  

PROPERTIES 

There are theoretically an infinite number of 
simulations that can meet the above conditions. 
This set or family of simulations are often 
referred to as ‘equiprobable images’ of the 
mineralisation (which has the same meaning as 
‘realisations’, in the sense that they are drawn 
at random from a specified spatial 
distribution). Although conditional simulations 
are customarily described as ‘equally likely’ 
(or ‘equiprobable’) images of the 
mineralisation, this is not strictly 
mathematically true. For example, gold 
deposits usually have positively skewed 
distributions. This implies that a tail of low 
frequency high grades exists, but these grades 
carry disproportionate metal (thus profit). 
When we simulate we generate values that 
more or less follow the input distribution. 
However, the exact histogram is not 
reproduced. As a consequence, some images 
have slightly more high grades and some 

slightly fewer. This is the reason that we can 
rank images as ‘optimistic’, ‘median’ or 
‘pessimistic’. 

Any individual simulation is a poorer estimate 
than kriging. However, averaging a set of 
simulations can yield a good estimate. A 
collection of many such simulations, when 
averaged over a block volume, is equivalent to 
a kriged estimate.  

Because we can have multiple realisations 
within each estimated block, in mining 
applications we can have access to the local 
distribution of metal within a block – as for 
Uniform Conditioning (UC), Multiple 
Indicator Kriging (MIK) or any other non-
linear geostatistical estimate of recoverable 
resources. Thus CS is a potential route to 
recoverable resource estimation (see Vann and 
Guibal, 2000, for a summary of recoverable 
resource estimation). 

In a sense, simulations are an attempt at 
‘sampling the unknown’ using constraints, e.g. 
statistical moments imposed by the data. Thus, 
in simulation, the requirements of stationarity 
are stricter than for linear geostatistics (for 
example, kriging). 

So, we can generate many simulated images. 
The question still remains: ‘how many 
simulated images are required to properly 
characterise a given domain?’ To answer this 
we must test the simulations to ensure they 
reasonably reproduce the input statistics. The 
validity of any subsequent use of the 
simulations for risk characterisation will be 
heavily dependent on how well our set of 
simulations characterises the intended 
‘probability space’.   

MAIN APPROACHES TO 
SIMULATION 
Simulation methods are highly dependent upon 
the nature of the variable to be simulated (i.e. 
the problem at hand).  Three classes of 
variables can be distinguished:  

1. Continuous variables that usually 
represent physical properties (e.g. 
mineral grade, layer thickness);  

2. Categorical variables (eg. lithofacies, 
geological units, grade envelopes); 
and 

3. Objects that are defined by their 
location, shape and orientation (e.g. 
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sedimentary channels, mineral 
grains).  

Depending on the choice of the variable, some 
methods will be more suited to reproducing the 
spatial distribution. In particular, geostatistical 
simulation methods depend on the choice of a 
model for the distribution of the variables of 
interest, partly characterised by the histogram 
and the variogram. The model chosen can be 
used as a basis for classifying simulation 
approaches. The classification employed here 
is based on the underlying geostatistical 
models used for different simulation methods 
but does not pretend to be exhaustive (for 
more details see Chiles and Delfiner, 1999).   

PIXEL-BASED METHODS 

This class of methods are based on the 
definition of an array of pixels or points  
(usually in the form of a regular grid) to which 
a certain characteristic is attached. To date, 
most applications of geostatistical simulation, 
especially for risk characterisation in mining 
problems, have employed pixel-based 
methods. 

Non-parametric methods 
Generally, these methods are a 
product of the indicator approach to 
geostatistics (see Journel, 1982, 1983, 
1987, 1988, 1989; and Journel and 
Alabert, 1989). The two most 
frequently applied non-parametric 
methods, sequential indicator 
simulation (SIS, see Gomez-
Hernandez and Srivastava, 1990) and 
p-field simulation (Srivastava, 1992; 
Froidevaux, 1993), are discussed in 
this paper. 

Gaussian-based methods 
These methods rely on Gaussian 
random functions (the ‘multiGaussian 
approach’, see Goovaerts, 1997) and 
presume the ‘diffusion’ model2 (for 
more details on diffusion models and 
alternatives, see Rivoirard, 1994; and 
Vann et al., 2000). The diffusion 
model is consistent with mineral 
deposits exhibiting gradational grade 
transitions: from high grade cores 

towards the outer rings of lower grade 
material (at various scales, and not 
necessarily as a simple ‘bullseye’). In 
mining situations, the authors have 
observed that the diffusion model 
applies to many deposit types, 
including porphyry Cu-Au and some 
types of Archaean Au systems.  

The two main methods in this class, 
widely applied in mining risk 
analysis, are the turning bands (TB) 
and sequential Gaussian simulation 
(SGS). More details of these are 
given later.  Other Gaussian-related 
techniques include truncated 
Gaussian and pluriGaussian 
(Armstrong et al., 2000). 

Fractals 
The ‘fractal dimension’ of a spatial 
distribution can be modelled using a 
power semi-variogram in such a way 
that the fractal nature of the 
distribution is maintained when the 
original distribution is simulated (see 
Kentwell and Bloom, 1998). Fractal 
methods are not widely used in the 
mining industry.  The limitation of the 
acceptable variogram models to the 
power model is probably one of the 
main reasons for their restricted use. 

OBJECT-BASED METHODS 

Point processes 
Point processes involve spatial 
realisations of pre-defined 
distributions (e.g. Poisson or Cox 
processes).  They can be used to 
model a wide range of phenomena 
(eg. distribution of trees in forests, or 
gems in precious stone deposits).  
They also offer the flexibility of being 
able to be used as components of 
more complex models (eg. Boolean 
methods). For an example of this 
approach applied to precious stones, 
see Kleingeld et al. (1997). 

Boolean methods 
Random sets can be constructed by 
locating independent random objects, 
the shapes and orientations of which 
are drawn from pre-defined statistical 
distribution, at Poisson points. These 
models have found favour with 
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or ‘border-effect’ model 
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petroleum geologists who appreciate 
the geological ‘flavour’ of the 
reconstructed reservoir architecture.  
However, the statistical inference of 
the model is not straightforward.   

• Add the simulated value to the 
conditioning data set. 

• Proceed to the next node on the 
random path and repeat the above 
steps. 

NON-PARAMETRIC 
METHODS 

DRAWBACKS OF SIS 

A main difficulty with SIS is as for multiple 
indicator kriging (MIK), i.e. order relation 
problems (Vann and Guibal, 2000; Vann et al., 
2000). Because indicator variogram models 
may be inconsistent from one cut-off to 
another we may predict from SIS more 
recovered metal above a cut-off ZC2 than for a 
lower cut-off ZC1, where ZC1<ZC2, which is 
clearly impossible in nature. There can be 
quite severe difficulties in this regard with 
MIK, and the same type of problem can be 
observed with SIS.  

SEQUENTIAL INDICATOR 
SIMULATION (SIS) 

The use of indicators is a strategy for 
performing structural analysis appropriate for 
characterising the spatial distribution of grades 
at different cut-offs, or categorical variables. 
Indicator simulation approaches now have a 
long history: see Alabert (1987); Chu (1996); 
Gomez-Hernandez and Cassiraga (1994); 
Gomez-Hernandez and Srivastava (1990); 
Isaaks (1984); Journel and Alabert (1989); and 
Journel and Isaaks (1984). 

While ‘order relation corrections’ are usually 
programmed, these do not fix the underlying 
problem: the theoretical solution is to account 
for the cross-correlation of indicators at 
different cut-offs (i.e. co-simulation of 
indicators), but this is completely impractical 
from a computational and time point of view.  

Sequential indicator simulation (SIS) was 
developed for application in petroleum 
reservoir modelling where extreme values 
(high permeabilities) are well connected in 
space. This high connectivity of extreme 
values is difficult to model in the 
multigaussian paradigm. Another major 
advantage of the SIS algorithm is that hard 
data and soft data can be easily mixed. SIS is a 
very efficient algorithm. 

A further drawback is that the quality of the 
simulation is sensitive to the kriging 
neighbourhood employed (often too small). 

P-FIELD SIMULATION 
The algorithm is as follows: After defining a 
random path through the nodes to be 
simulated, 

The p-field algorithm consists of two main 
steps: 

• establishing a set of local probability 
distributions; and • Discretise the distribution into (k+1) 

classes using k thresholds (or cut-
offs). • repeated Monte Carlo simulation 

from these distributions with 
correlated probability values. • Transform the data to a vector of 

indicators (1 or 0) depending on 
exceedence or not of the thresholds. A wide variety of methods can be used to 

establish the local distributions, including 
multiGaussian and indicator approaches. P-
field simulation is very efficient and 
conceptually simple. Note that there is a 
theoretical link between p-field, truncated 
Gaussian and sequential Gaussian methods 
(Journel and Ying, 2001). 

• Determine k ccdf (conditional 
cumulative distribution function) 
values using an indicator kriging 
algorithm. 

• Correct for order relations (see further 
below). Then build a complete ccdf 
model. Srivastava (1992) presents a petroleum 

application and Goovaerts (1997) gives more 
theoretical detail. Khosrowshahi and Shaw 
(1997) and Khosrowshahi, Gaze and Shaw 
(1998) give mining applications. 

• Draw a simulation value from that 
ccdf. 
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DRAWBACKS OF P-FIELD 
SIMULATION 

P-field simulation suffer two main drawbacks 
which can be extremely detrimental (especially 
in a mining context):  

• nodes close to the conditioning data 
commonly appear as local minima or 
maxima of the simulated realisations 
(this was identified first by 
Srivastava, 1992); and  

• the simulated values usually show 
greater continuity than the original 
data.  

Pyrcz and Deutsch (2001) detail these 
problems, coming the conclusion that the two 
flaws identified above are inherent in the 
algorithm. These authors recommend that p-
field simulation not be used. 

GAUSSIAN-BASED 
METHODS 

GAUSSIAN TRANSFORMATION 

All Gaussian-based methods rely on raw data 
being transformed to have a Gaussian 
distribution. A Gaussian transform (or 
‘anamorphosis’) is a simple technique whereby 
a raw data population is transformed to have a 
normal (Gaussian) distribution with zero mean 
and unit variance. For each raw data value a 
Gaussian equivalent is generated via the 
cumulative histograms for both the raw and 
Gaussian distributions. 

Gaussian distributions can then be transformed 
back to raw space via numerous methods. The 
two common approaches are by a simple 
graphical method or a more complex but more 
mathematically useful technique using Hermite 
polynomials (Marechal, 1978; Riviorard, 
1994). 

SOME COMMENTS ABOUT 
MULTIGAUSSIANITY 

For all Gaussian random functions, the 
hypothesis is that the Gaussian distributed 
values are multiGaussian (as a consequence all 
bi-variate regressions are linear, however this 
property is necessary but not sufficient for 
multiGaussianity). Whilst multiGaussianity is 
practically impossible to prove, there are 

checks that can be made for biGaussianity. 
These involve calculating variograms on the 
Gaussian data and indicator variograms of the 
same and comparing graphically (see 
Goovaerts, 1997). Whilst demonstrating 
biGaussianity does not prove 
multiGaussianity, failing to demonstrate 
biGaussianity suggests you should try another 
method. 

TURNING BANDS SIMULATION 

Turning Bands (TB) was the first large-scale 
3D Gaussian simulation algorithm 
implemented (Journel, 1974, Mantoglou and 
Wilson, 1982). The method works by 
simulating one-dimensional processes on lines 
regularly spaced in 3D. The one-dimensional 
simulations are then projected onto the spatial 
coordinates and averaged to give the required 
3D simulated value. The method is very 
efficient for generating non-conditional 
simulations and particularly good at replicating 
the variogram. Conditioning is obtained 
through a separate kriging step: 

• Non-conditional simulations at all 
target points and all sample points 
(Zs(x)) 

• Krige values to all sample points 
using real data (ZK(x)) 

• Krige simulated values at all points 
(ZKS(x)) 

• Combine using ZCS(x) = ZK(x) + [Zs(x) 
– ZKS(x)] 

A main advantage of TB is that it reproduces 
the variogram better than other methods for 
small simulated fields (e.g. grade control 
applications). 

DRAWBACKS OF TURNING BANDS 
SIMULATION 

The Turning Bands method used to suffer two 
‘mechanical’ limitations: 

• In 3D, the maximum number of lines 
regularly distributed in space was 
limited and the simulations sometimes 
showed “banding” effects which are 
unrealistic. 

• Only certain specific variogram 
models (including the spherical and 
the exponential models) could be 
simulated. 
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DRAWBACKS OF SEQUENTIAL 
GAUSSIAN SIMULATION 

The second limitation is irrelevant in mining 
applications, as it is practically always possible 
to model experimental variograms using 
combinations of elementary spherical and/or 
exponential functions. 

For all Gaussian methods the size of the field 
being simulated must be much larger than the 
range of the variograms (this is also true for 
turning bands).  The first limitation has been effectively 

eliminated since it has become possible to use 
as many bands as possible (e.g. 3-400) 
although TB is still considerably slower than 
sequential methods. 

For SGS, (as for SIS) the biggest problem is 
the search neighbourhood selection. The 
selection of small neighbourhoods can lead to 
poor conditioning and poor replication of the 
variogram.  Other limitations of TB are related to the 

assumptions of multiGaussianity (as for SGS, 
below).  

OTHER GAUSSIAN SIMULATION 
METHODS 

SEQUENTIAL GAUSSIAN SIMULATION 
(AND VARIANTS) Truncated Gaussian is a method that is used 

for simulating sequentially ordered lithofacies 
by truncating a multiGaussian random function 
Y(x) (Galli et al., 1994). Once the covariance 
of Y(x) has been determined, the simulation of 
Y(x) can be performed using a sequential 
algorithm.  

 The Sequential Gaussian simulation is an 
efficient method widely used in the mining 
industry. The algorithm, in very simple terms, 
defines a random path through all grid nodes 
(including the conditioning samples). Simple 
kriging of the nodes in the path helps 
generating a local distribution.  A new value is 
then drawn from this local distribution. This 
added to the nodes in the random path and the 
next node is simulated (and so on). 

These techniques are well suited to petroleum 
reservoir simulation. They also have possible 
applications in mining for grade simulation 
when the grade distribution is highly 
correlated to lithotype and shows different 
spatial characteristics for different units. The actual algorithm is as follows: 

• Define a random path through all grid 
nodes  

NUMERICAL RECIPES 
• To simulate the first grid node given 

the n conditioning data (taken out of a 
neighbourhood centred on the target 
node), estimate its value by simple 
kriging -  y1*. Then select a Gaussian 
residual R1 that is independent of y1* 
and calculate y1 = y1* + σSKR1 (which 
is the local conditional expectation in 
the multiGaussian model). 

There are numerous numerical recipes for 
generating independent processes with a given 
covariance (see Lantuejoul, 2001).  We briefly 
touch upon the main techniques used to 
generate multiGaussian processes and describe 
some different well-established techniques. 

LU DECOMPOSITION 
• Add the new value y1 to the 

conditioning data set. A very important category consists of the 
algorithms used to generate Gaussian spatial 
processes. One can generate a sequence of 
Gaussian variables with a given covariance by 
evaluating the square root of the covariance 
matrix.  Various decomposition methods exist; 
the most frequently used being the LU 
(Choleski) decomposition (see Davis, 1987; 
Davis and Wilkins, 1991).  These methods 
suffer from efficiency limitations related to the 
size of the matrices to be handled. There are 
essentially used for small simulations.  

• Draw a value y2 from the 
conditioning distribution of the 
random variable Y2 at the second grid 
node given the (n+1) conditioning 
data: again a simple kriging is 
required. 

• Repeat until all nodes are simulated.  
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USE OF GEOSTATISTICAL 
SIMULATIONS TO 
CHARACTERISE RISK 

FREQUENCY-DOMAIN APPROACH 

Frequency domain approaches are also 
common. Here the covariance is reproduced 
through sampling of its discretised Fourier 
Transform. We then use the inverse Fourier 
Transform to obtain the realisation of a 
discrete spatial process.  

Each simulation provides an alternative 
equiprobable representation of the distribution 
(or for CCS, the joint-distribution) of 
variables, meaning that we can get as many 
equally realistic answers to any of our 
questions as we want. The differences between 
these answers give us a measure of the joint 
spatial uncertainty and can help us manage the 
financial risk attached to the project. 

SIMULATED ANNEALING 

Simulated Annealing has gained ground over 
the past decade, especially in the petroleum 
industry (Deutsch and Cockerham, 1994; 
Goovaerts, 1996). Starting form an initial 
image, where only the histogram is 
reproduced, nodes are swapped in pairs, the 
swap being accepted if a pre-specified 
objective function is lowered. The simulation 
stops when no swap lowers the objective 
function. The image must be cooled slowly 
(hence ‘annealed’) in order to avoid local 
minima.  

CONFIDENCE INTERVALS AND RISK 

It is difficult to associate a confidence interval 
to an estimate and it is well known that the 
ordinary kriging variance does not allow the 
construction of such an interval, except under 
specific circumstances (Gaussian distribution 
of errors) that are probably never met in 
practice. In fact, the kriging variance, like the 
kriging weights, does not depend on the data 
values themselves, and we expect a confidence 
interval to be heavily dependant on the values: 
in a positively skewed distribution, high values 
are less likely than low ones, thus the 
confidence intervals will be wider and the risk 
higher. 

MULTIVARIATE 
SIMULATION 
Conditional simulation, as outlined above, 
deals with a single variable. Conditional co-
simulation (CCS) is conditional simulation of 
more than one variable. The area of 
multivariate simulation is a fertile one for 
mining applications. We refer the reader to 
Carr and Myers (1985), Goovaerts (1997), 
Verly (1993) and Wackernagel and Grzebyk 
(1994). 

Simulations can be used to build confidence 
intervals empirically: many different 
simulations of a variable being calculated, we 
have access, at each point, to a complete 
empirical distribution (histogram); we are thus 
able to evaluate the probability for a given 
variable to take a value belonging to a given 
interval. This is precisely the notion of a 
confidence interval.  

We can imagine simulating more than one 
variable (e.g. gold and copper in a porphyry, 
grade and contaminants in an iron orebody; 
multivariate trace elements in geochemistry or 
environmental science, etc.). If we perform 
independent simulation of our multivariate set, 
the resulting simulations will not reproduce the 
correlation between these variables.  

RISK ANALYSIS IN MINING 

Consider open pit optimisation as an example: 
In general, such optimisation is carried out on 
a single model, say a kriged (or other 
estimated) estimated block model. The 
optimisation program implicitly assumes that 
all the blocks are estimated equally reliably 
(i.e. it treats them the same way). This is 
virtually never the case, for example, the 
density of drilling data decreases with depth. 

A simulation technique that overlooks the 
modelling of ‘cross-structures’, seen in cross-
variograms, would miss the crux of the 
problem in some situations. For example, 
univariate recoverable resource estimation. 
Most univariate approaches can be generalised 
to multivariate application. 

An alternative is to build a large set of 
simulations (say 50, 100 or more) and to run 
the pit optimiser on representative members of 
the set: say, at least, the “worst” (10th 
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percentile?), “median” (50th percentile?) and 
“best” (90th percentile) cases. We could select 
a much larger number of simulations (N being 
limited by computer resources only) and the 
outcome of the optimisation would then be not 
one net present value (NPV), but a distribution 
of NPV’s allowing us to better quantify the 
risk involved.  

The simulation approach would also take into 
account the differences in reliability between 
block grades: a block located in a badly 
informed zone will vary widely from one 
simulation to another, whereas blocks located 
in well drilled areas will vary little, due to the 
conditioning effect.  

This approach can be extended to shorter term 
mining problems and grade control 
applications. Various mining schedules can be 
tested on one or several different simulations. 

In general, conditional simulations are ideal 
inputs for studying the technical and economic 
effects of complex mining operations; for 
instance, multivariate optimisation problems, 
complex geometries in underground mining, 
etc. 

 

 

CONCLUSIONS & 
RECOMMENDATIONS 
The discipline of geostatistics is now nearly 40 
years old, and it is 30 years since the first 
conditional simulation algorithm was 
developed (Journel, 1974). There are now a 
large (and ever increasing) number of 
operational conditional simulation tools to 
choose from. Understanding the underlying 
assumptions and mathematics of these methods 
is critical to making informed choices when 
selecting a technique for a specific application, 
for example risk-characterisation. 
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