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Abstract 

Climatic data are art essential input for the determination of crop water requirements. The density and location of weather 
stations are the important design variables for obtaining the required degree of accuracy of weather data. The planning of 
weather station networks should include economic considerations, and a mixture of full and partial weather stations could be 
a cost-effective alternative. A 'full' weather station is defined here as one in which all the weather variables used in the 
modified Penman equation are measured, and a 'partial' weather station is one in which some, but not all, weather variables 
are measured. The accuracy of reference evapotranspiration (Et r) estimates for sites located some distance from surrounding 
stations is dependent on measurement error, error of the estimation equation, and interpolation error. The interpolation error 
is affected by the spatial correlation structure of weather variables and method of interpolation. A case-study data set of 
2 years of daily climatic data (1989-1990) from 17 stations in the states of Nebraska, Kansas, and Colorado was used to 
compare alternative network designs and interpolation methods. Root mean squared interpolation error (RMSIE) values were 
the criteria for evaluating Et r estimates and network performance. The kriging method gave the lowest RMSIE, followed by 
the inverse distance square method and the inverse distance method. Co-kriging improved the estimates still further. For a 
given level of performance, a mixture of full and partial weather stations would be more economical than full stations only. 
© 1997 Elsevier Science B.V. All rights reserved. 
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I .  I n t r o d u c t i o n  severely limited. There are a number of  ways to 
perform irrigation scheduling. One of  the most com- 

Irrigation scheduling is defined as the procedure men approaches uses estimated crop water require- 
for predicting the timing and amount of  the next ments based on computed reference evapotranspira- 
irrigation. Scheduling plays an important role in tion (Etr).  
planning for the future of  agriculture, especially in Several definitions of  Etr have been formulated. 
developing countries, where resources are often Jensen (1973) defined Etr as the rate at which water, 

if available, would be removed from the soil and 
plant surface, expressed as the rate of  latent heat 
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tively as a depth of water per unit time. For compara- no attention from researchers. This suggests the im- 
tive purposes it refers to a well-watered crop such as portance of the proposed research on (1) design of 
alfalfa (lucern) with 30-50cm of top growth and weather monitoring network density, (2) evaluating 
about 100 m of fetch under given climatic conditions the advantages of 'partial' weather stations for accu- 
unless defined otherwise. Duke et al. (1985) simpli- rate measurement of reference evapotranspirtation 
fied the definition of Et r to 'the water used by a (Eta) and (3) location of different classes of weather 
well-watered reference crop, such as alfalfa, which stations. A number of studies have been conducted in 
fully covers the soil surface'. The older term, poten- the field of spatial analysis of weather data and 
tial Et, refers to water use by any well-watered crop network design. Amegee (1985) used kriging to de- 
and is, therefore, not defined precisely. Et~ can be velop regional contour maps for seasonal Etr. Har- 
computed by using weather data and any of several cum and Loftis (1987b) worked on a study of weather 
estimating equations. The availability of weather data monitoring network design and evaluation, extending 
of acceptable spatial resolution for large-scale irriga- the use of Kalman filtering for selecting the station 
tion scheduling is an important factor to consider in density and location. That study explicitly considered 
planning the development and management of irriga- both spatial and temporal correlation. In the present 
tion systems throughout the world, study only spatial correlation is considered for de- 

The modified Penman combination equation is sign purposes, therefore a shorter period of record is 
used to compute Et r, as it is considered to be a needed to characterize the correlation structure of the 
satisfactory estimation equation when daily estimates weather variables. Hubbard (1994) studied spatial 
of Et~ are desired (Jensen et al., 1990). The proce- variability of daily weather variables in the High 
dure for computing Et~ using this equation is de- Plains region of the central USA. 
scribed in Appendix A. Gandin (1970) mentioned that the basic meteoro- 

logical elements traditionally observed at a ground 
level station can, as a first approximation, be divided 
into three groups corresponding to the density of the 

2. Background theory of partial weather stations observational network they require. The first group 

of weather elements, including air pressure, soil 
The planning of climate station networks has temperature at depth and sunshine duration (solar 

occupied researchers for many years and is becom- radiation included), requires the least density of net- 
ing even more essential because of resource limita- working. The second group, of intermediate spatial 
tions and the requirement for optimizing the use of density, includes air temperature, humidity, wind 
climatological data. Perhaps the most famous work speed and cloud cover. The third group, and that of 
in this field was that by Gandin (1970). Network highest spatial density, comprises precipitation, the 
design using only 'full' weather stations has gener- characteristics of snow cover and also elements cov- 
ally been the practice in the recent past. However, it ered by the term 'meteorological phenomena' 
might be more economical to use some mixture of (thunder storms, fog, snow storms). Gandin (1970) 
'full' and 'partial' weather stations, i.e. stations of also recommended in general, for the flat areas of the 
different classes. Cost considerations might be espe- USSR, the admissible distances between observation 
cially important in developing countries, which face points or stations for each group. The recommended 
extreme pressures on both their water resources and maximum distance between points for least dense 
financial resources, networks was 150-200kin, for the intermediate net- 

A 'full' weather station is defined here as one in work, 50-60km and for the most dense network, 
which all the weather variables used in the modified 30 km. 
Penman equation are observed or measured, and a Some of the weather elements observed in these 
'partial' weather station is one in which some but classes recommended by Gandin (1970) are beyond 
not all weather variables are observed or measured, the scope of this study, and he did not work on the 
Density and location of different classes of weather estimation of evapotranspiration. In the present study 
stations in a given region have received very little or two classes of weather stations have been defined for 
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network design. They are given below with the 60o • 
weather elements, required for estimating Penman ~ ~ • 
Err, observed in each class. This classification is 
based on the investrnent and operational cost of  the ~ 

• ktttr 
weather stations and the spatial variability of the ~ n  • NEBRASKA 
weather elements. Class B has maximum and mini- ~ 
mum temperatures, relative humidity and wind run, ~ ~ • L,*~ 
and Class A comprises all the elements in Class B • • 
and solar radiation. Usually the weather elements s ~  • • IkC~k 
observed in Class B require less sophisticated and ~0 • 
lower-cost equipment (with the exception of relative COLORADO 
humidity) and are of  (intuitively) higher spatial vari- Slrd~ Co~ 
ability. (This has been verified using the data from ~0 • 

the case study.) KANSAS • 

100- 

3. Case study ~ 

The primary case study data set includes 17 0 ~0 2~ 3~ 4~0 ~ 
weather stations in the states of  Nebraska, Kansas Distance of Stdions, km 
and Colorado. For this study, 2 years of  dally cli- 
matic data (1989-1990)  are selected from these 17 Fig. 1. Study area showing weather stations. 
stations. Specific geographical information for the 
study area is given in Table 1. The H and V points 
in Table 1 are respectively horizontal and vertical tances are oriented north and south, and the H 
coordinates of  a station from a reference point. The distances are oriented east and west. The location of 
reference point is 37:30°N, 104:00°W. The V dis- the case study area is shown in Fig. 1. 

Table 1 
Geographical information of case study area 

Weather station Elevation (m) Latitude (°N) Longitude (°W) H (kin) V (km) 

McCook, NE 792 40.23 100.58 293.83 303.78 
Champion, NE 1029 40.38 101.72 196.36 320.45 
Grant, NE 975 40.85 101.67 200.67 372.32 
Silverthorn, NE 1302 41.53 102.78 104.63 448.26 
Gudmundsen, NE 1049 42.4 101.43 220.73 544.59 
Lexington, NE 731 40.78 99.75 365.5 364.91 
Dickens, NE 945 41 100.93 263.73 389 
Arthur, NE 1097 41.65 101.52 213.57 461.23 
Arapahoe, NE 1097 41.37 101.67 200.67 429.74 
Panhandle, NE 1244 41.85 103.68 27.23 483.46 
Ainsworth, NE 765 42.55 99.87 355.47 561.26 
Gordon, NE 1109 42.8 102.17 157.67 589.04 
Garden City, KS 866 37.98 100.82 273.77 53.72 
Colby, KS 966 39.38 101.07 252.27 209.31 
Hays, KS 610 38.87 99.33 401.33 151.89 
Stratton, CO 1390 39.3 102.52 127.57 200.05 
Sterling, CO 1200 40.47 103.17 84.57 329.72 
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4. Description of  the avai lable  data 5.2. Spatial correlation 

The data used in this study are from the Auto- Correlation is a measure of linear dependence 
mated Weather Data Network (AWDN) operated by between two or more variables, and spatial correla- 
the High Plains Climate Center (HPCC) located at tion is the relation between the values of a given 
the University of Nebraska, Lincoln. The weather variable at a point and the values of the same 
elements are observed at the field stations in the case variable or a different variable (spatial cross-correla- 
study area (Hubbard et al., 1983). The final data tion) at a stated distance from the first point. In other 
analyzed are the daily, 3 day and weekly averages of words, the spatial correlation is the relationship be- 
the following weather elements for the given station, tween one or more variables with a given relative 
as required for the modified Penman equation de- orientation. A spatial correlation function gives val- 
scribed in Appendix A: maximum and minimum ues of spatial correlation coefficients (the familiar 
temperature (°C); relative humidity (%); wind run Pearson's r) as a function of spatial separation dis- 
(km day- ~); solar radiation (MJ m-  2 day- 1); aver- tance. The spatial correlation function and semi- 
age computed Et r (mm day-l ) ,  variogram convey the same information, as is shown 

in the following equation: 

5. Geostatistieai methods used p(do) = I Var(X)  (3) 

where p(dij) is the correlation coefficient for points 
In the present study mean values were removed separated by distance diy and Var(X) is the variance 

from the data to avoid the effect of trend (drift) in of the variable X. The sample correlation coeffi- 
developing spatial structures of the weather vari- cients can be computed by the following equation: 
ables. The following spatial functions were used in 

this study. ( l / n )  ~[Xi-xil[xj-Yxj] 
5.1. Semi-variogram p(dij) = 1 trx 2 (4) 

In all of the above equations i and j are two stations 
Perhaps the best known spatial function is the separated by a distance dij , n is the number of pairs 

semi-variogram, which is a function or graph de- of observations, X is the sample value, A" is the 
scribing the expected squared difference between mean, and trx 2 is the variance of the individual 
pairs of samples with a given relative orientation weather variable. 
(Clark, 1982). The general equation for the sample 
semi-variogram T(dij) of any phenomenon is given 5.3. Cross,semi-variogram 
as 

The co-regionalization of two variables Z t and Z 2 
1 (Xi_Xj)2 (1) (describing spatial correlation of two different 

y (d i j )  = ~ n  1 weather variables) is summarized by a sample 

where the sum is taken over all points separated by cross-semi-variogram: 
distance dij (actually a distance class interval). The 1 n 
following equation represents the sample semi-vario- Ylz(dij) = ~ n  • [ZI( i )  - Z l ( j )  ] [Z2(i)  - Z2( j )  ] 
gram after the annual mean (drift or trend) is re- 1 
moved: (5) 

n where n is the number of pairs of observation sepa- 
l ~_, [ (X i _~2 i ) _ ( X j _  ~2j)] 2 (2) rated by a distance dij, and i and j are two sampling 

Y(diJ) = "~n 1 points. Variables Z 1 and Z 2 do not necessarily need 
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tO have the same number of samples, but the cross- where b E is an appropriate constant. The weight w~ 
semi-variogram is calculated using only the locations approaches zero as the distance d increases. When 
where both variables are measured. Unlike semi- the parameter b takes the value of one or two, the 
variograms, cross-semi-variograms can be negative, technique is called inverse distance interpolation or 
if the relationship between Z~ and Z 2 is negative, inverse squared distance interpolation, respectively. 
The cross-semi-variogram is used to enhance kriging Ripley (1981) recommended the use of one, two and 
estimates via co-kriging, four as the values for b 2. The inverse distance 

Spatial correlation structures, as described by the technique does not take advantage of the spatial 
semi-variogram, cross-semi-variogram, or spatial correlation structure explicitly. However, as we have 
correlation function,~ may be anisotropic, i.e. may already noted that these correlation structures tend to 
vary with direction, be linear, we might guess that inverse distance 

weighting would work fairly well. 
5.4. Interpolation methods 

5.4.2. Kriging 
There are a number of commonly used interpola- The kriging technique is somewhat more sophisti- 

tion techniques described in the literature, such as cated than those mentioned above, and the weights 
simple average, Thiessen polygon, classical polyno- are directly related to the spatial correlation structure 
mial interpolation, inverse distance, multi quadric (semi-variogram). There are two basic advantages to 
interpolation, optimal interpolation, kriging and oth- kriging over simpler interpolation techniques. First, 
ers. In this study two of the most promising interpo- kriging provides the best linear unbiased estimator 
lation techniques are applied for designing weather (BLUE) to the interpolation problem, given the basic 
monitoring networks: inverse distance interpolation assumptions of no trend and a model for the semi- 
was chosen for its simplicity, and kriging interpola- variogram. Both of these assumptions apply in the 
tion and its extension co-kriging were chosen to take present study as Eq. (2) is used to calculate the 
advantage of the spatial correlation structure de- semi-variogram, and good models are obtained using 
scribed by the semi-variogram and cross-semi-vario- a linear fit for the semi-variogram. Second, an analy- 
grams, sis of interpolation error is provided (Tabios and 

Salas, 1985). (For a detailed description and the 
5.4.1. Inverse distance interpolation derivation of the kriging system of equations, see 

As is obvious frc)m the name of the interpolation Clark (1982) and Tabios and Salas (1985).) 
technique, the weighting factor is inversely propor- 
tional to the distance. The weights of this interpola- 
tion technique are solely a function of the distance 5.4.3. Co-kriging 
between the point of interest, with coordinates Co-kriging extends the principle of optimal esti- 
(Ho,Vo), and the sampling points (Hi,V/) for I =  mation using regionalized variable theory from that 
1,2, • • • ,n. Considering the distance d0i between of a single property to situations where there are two 
these two points, the weight of a sampling point or more co-regionalized properties. In other words 
(Hi,V~) is in the form co-kriging takes advantages of inter-variable correla- 

f (doi)  tion. Co-kriging is more efficiently used where one 
variable may not have been sampled sufficiently 

w~ = n (6) (owing to experimental difficulties, high costs, etc.) 
~" f(d°J)  to provide estimates of acceptable precision. Estima- j=l  

tion precision can be improved by utilizing the spa- 
where f(doi) repre, sents a given function of the tial correlation between the under-sampled (primary) 
distance d0r The common form of this function is variable and other, more frequently sampled co-vari- 

1 ables. The concepts of co-kriging discussed here 
f ( d o i  ) = (do i )b  2 (7) assume only one co-variable, but the equations are 

readily expanded to include additional co-variables. 
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The co-kriged value of the under-sampled, or RMSIE is similar in form to the sample standard 
primary, variable, Z 2, is computed as a weighted deviation and has the same form as kriging error: 
average of the observed values of the co-variable, o5 
Z,,  and Z z occurring in the estimation neighborhood [actual Et r -E t r (es t lmated)]  
of each kriged point. The co-kriged value Z 2 a t  point i= 1 
zero is RMSIE = 

n 

n I n 2 

Z.z(O) = Y'~ W, iZ , ( i  ) + ~_~ W2jZ2( j )  (8) (9) 
i= 1 j = I A key question that arises is whether it is better to 

interpolate individual weather variables or to intertxr- 
where Wli and W2j are the weights associated with late computed Et r. To answer this we shall use three 
Z 1 and Z 2, respectively, and n 1 and n 2 are the different estimates of E t  r a t  a particular station 
number of neighbors of Z 1 and Z 2 involved in location. The first and most accurate is the actual Et r 
estimating Z 2 at point of interest zero, respectively, estimate computed from the observed data at that 

The weights on observed values of Z 1 and Z 2 are particular station. The second, which we shall call 
chosen so that the estimate is unbiased with mini- E l  r (computed) is estimated from the interpolated 
mum variance, just as in kriging. However, the values of weather variables from surrounding sta- 
solution of the co-kriging system of equations for the tions to that particular station (and ignoring data 
weights is obtained using the semi-variograms and from the station itself). The third, which we shall call 
cross-semi-variograms of each Z 1 and Z z with the Et r (interpolated) is estimated at that particular sta- 
kriged location zero. The resulting system of equa- tion from the interpolation of computed Etr values at 
tions is more complex than in kriging. Like kriging, surrounding stations (again ignoring the station's 
solution of the co-kriging system also yields the own data). Et, (computed)and Et r (interpolated)are 
co-kriging estimation variance for interpolated loca- compared with the actual Et r estimate using the 
tion zero. The equations of co-kriging system have RMSIE. The interpolation location for which actual 
been presented in full by Isaaks and Srivastava (1989) Etr estimates are available is sometimes called a 
and by Vieira (1983). The co-kriging system requires 'fictitious point'. 
at least one sample point of both the primary vari- 
able and co-variable properties within the estimation 
neighborhood. If  the primary variables and co-varia- 7. Results and discussions 
bles are measured at all sampling sites in the neigh- 
borhood, then co-kriging yields the same estimate as 7.1. Spatial structures o f  weather variables 
kriging of the primary variable alone. In this case, 
co-kriging is of no value. Calculated spatial structures for daily summer (21 

June-21 September) data of 1989 are given in Table 
2. All of the spatial functions may be represented by 
a linear model as 

6. Evaluating network performance Xi = A + B ( dij)  (10) 

where Xi is an individual weather variable, d o is the 
To evaluate the performance of a given interpola- distance (in km), and A and B are the coefficients of 

tion method or a network configuration, we need a the equation, computed by the regression analysis. 
criterion for measuring performance. One such crite- The values of A, B and correlation coefficient r 2 
don is root mean squared interpolation error are given in Table 2. All these equations are based 
(RMSIE), defined below. The RMSIE is widely used on the spatial structure after mean (drift or trend) is 
when one is most interested in the few largest errors removed. Both the present study and that by Harcum 
as opposed to the simple average of all errors. The and Loftis (1987a) investigated whether spatial cor- 
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relat ion was a funct ion  o f  direct ion for  the variables  tempora l  patterns are not  cons idered  in our  mode l  

s tudied in the High  Plains regions  o f  Colorado,  other  than our  considerat ion o f  s u m m e r  data only.  

Kansas,  and Nebraska,  and found that isotropy was a W e  recognize  o f  course  that stations which  are c lose 

reasonable  assumption.  I f  this assumpt ion were  vio-  together  have  s imilar  seasonal  patterns. I f  we  had a 

lated, the kr iging es t imates  wou ld  not  be  statistically very good  seasonal  mode l  for  each location,  we 

opt imal  but  still migh t  be  shown to be  very  good.  could  r e m o v e  the dai ly seasonal  componen t  and 

The l inear  funct ion o f  the semi -va r iogram in- reduce  the apparent  spatial correlat ion (Harcum and 

creases  apparent ly wi thout  bound,  imply ing  that the Loftis,  1987a, Ha rcum and Loftis ,  1987b). As  we  

funct ion does  not  reach its sill (a constant  value  for men t ioned  above,  however ,  long- term data wou ld  be 

long lag dis tances indicat ing no correlat ion)  for  the needed  for  this approach. Al though  such records are 

case study (i.e. weather  variables  are spatially corre-  avai lable  for many  locat ions in the U S A ,  this migh t  

lated out to a dis tance o f  at least  600km) .  The  spatial not  be true for the deve lop ing  countries which  are a 

structure persists for  such a long dis tance because  focus  o f  this research. Fur thermore ,  the mode l ing  

general  weather  patterns affect  large areas. Also,  and es t imat ion approach used here  cons ider ing  spa- 

Table 2 
Spatial structures of weather variables of daily data (Xi  = A  + B × di)), and cross-semi-variograms of weather variables of daily data 
(WVi ~ A + B × dij), both for summer 1989 (92days) 

Spatial structure A B r 2 

Weather variable (,~ ) 
Maximum temperature (°C) 

Semi-variogram - 0.590 0.025295 0.88 
Correlation coefficient 1.005 - 0.000610 0.90 

Minimum temperature (°C) 
Semi-variogram 1.509 0.008143 0.43 
Correlation coefficient 0.940 - 0.000270 0.49 

Mean temperature (°C) 
Semi-vanogram - 0.170 0.012511 0.76 
Correlation coefficient 0.993 - 0.000400 0.80 

Relative humidity (%) 
Semi-variogram 11.940 0.312067 0.61 
Correlation coefficient 0.971 - 0.001040 0.72 

Wind run (km day-J ) 
Semi-variogram 640.300 14.751990 0.63 
Correlation coefficient 0.965 -0.001290 0.68 

Solar radiation (MJ m 2 day- J ) 
Semi-variogram 0.769 0.055201 0.87 
Correlation coefficient 0.975 - 0.001320 0.89 

Etr (mmday- i ) 
Seml-variogram 0.138 0.008577 0.76 
Correlation coefficient 0.990 - 0.000900 0.86 

Maximum temperature × solar radiation 
Cross-semi-variogram - 0.986 0.022100 0.81 

Cross-semi-variogram A B r 2 

Weather variable ( W~l i ) 
Maximum temperature X solar radiation -0.986 0.0221 0.81 
Maximum temperature × solar radiation, summer 1990 - 1.614 0.0280 0.81 
Maximum temperature × Etr -0.431 0.012 0.85 
Mean temperature × Etr - 0.357 0.0078 0.74 
Relative humidity × Et r - 0.470 - 0.0444 0.69 
Wind run × Et r 10.602 0.1261 0.39 
Solar radiation X Et r -0.0532 0.0157 0.84 
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tial correlation is much simpler than that of Harcum mum temperature are 'better correlated' in space (in 
and Loftis (1987a, Harcum and Loftis, 1987b). that they have less scatter in their correlation func- 

As mentioned above, all of the variables studied tions) than wind run, relative humidity and minimum 
show strong spatial correlation out to long lag dis- temperature, indicating that the latter three elements 
tances. For some variables, however, the linear model are more variable in space; that is, they are more 
prediction of the correlation function or semi-vario- affected by local features of the landscape or local- 
gram is less precise than for others. Table 2 suggests ized weather patterns. The variables with the noisier 
that solar radiation, E t  r, mean temperature and maxi- spatial correlation are included in our Class B weather 

a )  Sample Semi-Variogram, E~r 
7 

6 

2 

1 ~ 

0 100 260 300 400 500 600 
Distance, k m  

Sample Correlation Coefficients~ Err 
1 

0.9 '~ ~ ~, ~ 

8 0,7 

11.5 ~ 

11.4 
o Id0 ~b0 ~d0 4d0 5~0 600 

Distance, km 

Fig. 2. (a) Spatial s~ructurcs of Err (computed) for daily data of summer 1989. (b) Sample cross-semi-variogram of solar radiation and Etr 
and of relative humidity and Et r for summer 1989 data. 
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stations. Examples of the spatial correlation function RMSIE of these two estimates of Etr using Dickens 
and semi-variogram are shown in Fig. 2(a), and and Garden City as fictitious points, one by one, 
examples of cross-semi-variograms are shown in Fig. when 11 Class A weather stations were used for 
2(b). interpolation of summer 1989 data. The RMSIE 

values were lower for estimation of Et  r by interpo- 
7.2. Appl icat ion  o f  interpolation methods  lating weather variables and computing Et  r than for 

estimation of Etr by interpolation of the computed 
For the case study data, the Etr (computed) has Etr values, but the difference is small. The signifi- 

lower RMSIE values than those of Et  r (interpolated) cant point is that one may interpolate individual 
in general. Fig. 3 shows the comparison between weather variables and then calculate Et  r effectively, 

( b )  Crom-Semi-Variogram, S Rad* Err 
II 

10 

6 ~ ~ 

o ,6o z~o 36o ,60 5~o ooo 
Distance, krn 

Sample Cross Semi-Variograr~ RIi*l~r 
0 

-5  ~ ~ ~ ' ~  

~ -10  ~ ~ '~ " ,~ 

-15  ~' ~ ~ ~ ~ ~ 

-20 ~ 

-25 ~ 

-30 
o 1~o z~o 3~o 46o 5oo 8oo 

l)istam~, km 
Fig. 2. (continued). 
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which is necessary when applying partial weather averaging periods are shown as well. If one were 
station networks, using a center pivot to irrigate daily, then daily 

Tables 3 and 4 provide a comparison of the three values of weather variables and E t  r might be most 
interpolation methods for a variety of network con- appropriate. For less frequent irrigation, moving av- 
figurations (to be discussed below) using Dickens erages might be more appropriate. Kriging emerges 
and Garden City as fictitious points. Several time as a clear winner in this comparison. An example of 

Table 3 
Performance of alternative weather station network configurations and interpolation methods in estimating Et r at Dickens, Nebraska; table 
values show reduction in RMSIE compared with the first configuration of six Class A weather stations; additional improvement in RMSIE 
of Etr (ram day - j  ) at Dickens for daily summer 1989 data by using co-kriging to 'convert' Class B stations into Class A stations is also 
shown 

Data used Number of stations RMSIE (ram) % Reduction in RMSIE 

Inv. Inv. 2 Kriging Inv. Inv. 2 Kriging 

Daily, summer 1989 6A 1.4 1.4 1.3 0 0 0 
6A + 5B 1.1 1.0 0.8 19 28 36 
6A + 10B 1.0 0.9 0.7 30 35 44 
11A 1.0 0.8 0.6 28 40 53 
11A + 5B 0.9 0.8 0.5 37 44 58 
16A 0.9 0.8 0.6 38 41 52 

3 day averages, summer 1989 6A l. 1 1.1 1.0 0 0 0 
6A + 5B 0.8 0.7 0.6 23 35 45 
6A + 10B 0.7 0.7 0.5 32 38 51 
11A 0.8 0.6 0.4 31 45 62 
11A + 5B 0.7 0.6 0.4 39 45 61 
16A 0.7 0.6 0.5 39 41 54 

3day moving averages, summer 1989 6A 1.1 1.1 1.0 0 0 0 
6A + 5B 0.8 0.7 0.6 23 35 44 
6A + 10B 0.7 0.7 0.5 32 38 51 
11A 0.8 0.6 0.4 28 43 57 
11A + 5B 0.7 0.6 0.4 36 43 60 
16A 0.7 0.7 0.5 35 38 54 

7day averages, summer 1989 6A 0.8 0.8 0.7 0 0 0 
6A + 5B 0.6 0.5 0.4 26 41 45 
6A + 10B 0.5 0.5 0.4 31 37 50 
11A 0.6 0.4 0.3 28 45 55 
11A + 5B 0.5 0.5 0.3 33 38 56 
16A 0.6 0.6 0.4 28 29 47 

7 day moving averages, summer 1989 6A 0.9 0.9 0.8 0 0 0 
6A + 5B 0.7 0.5 0.4 24 40 49 
6A + 10B 0.6 0.6 0.4 29 35 54 
11A 0.6 0.5 0.3 27 44 59 
11A + 5B 0.6 0.6 0.3 31 37 60 
16A 0.6 0.6 0.4 27 30 52 

Number of stations Additional improvement 

RMSIE (mm) % Reduction in RMSIE from 
original configuration 

Inv. Inv. 2 Kriging Inv. Inv. 2 Kriging 

6A + 5B 1.1 1.0 0.8 2 2 2 
6A + 10B 0.9 0.8 0.6 7 6 11 
11A + 5B 0.8 0.8 0.5 4 0 - 2 

Inv., Inverse distance interpolation; Inv. 2, inverse squared distance interpolation. 



M. Ashraf et al. / Agricultural and Forest Meteorology 84 (1997) 255-271 265 

1.6 co-kriging is also included for one of  the data sets 
used in this study. Table 3 shows the additional 

1.4 _ . .4.-  ~ d m  ~ v  
improvement when co-kriging was applied to the 

l.z mixture of Class A and Class B network configura- 
~ tions. 

~1 ~ l ~  ~ In these configurations all Class B weather sta- 
~ ~ tions were 'converted'  to Class A stations, one by 

~08 ~ t~  ~ ~ ~ one (by 'converted'  we mean that solar radiation was 
estimated by spatial interpolation of  the Class B 

~0.6 ~ ~ ~ ~ ~ weather stations, using co-kriging) and then the esti- 
~ mated values at these stations were interpolated to 1).4 

i ~  l ~  ~ ~ [ ~  Dickens. These new RMSIE values are listed in 
Table 3. In this co-kriging 'conversion'  process, the 

0.z l ~  l ~  I ~  ~ [ ~  cross-semi-variogram of maximum temperature and 
0 solar radiation was used. This table also shows the 

~ 9  3D~89 3 ~  7 ~ 9  7 ~  

D,~ set t~ per cent reductions in RMSIE values from the origi- 
nal configurations. The advantage of  co-kriging in 
this example is up to 10% reduction in RMSIE 

Fig. 3. Comparison of RMSIE of Etr (computed) and Et r (inter- compared with ordinary kriging. The advantage dis- 
polated) at Dickens and Garden City for different data sets. 
DS'89, Daily data for sunamer 1989; 3DS'89, 3day average d a t a  appears in the most dense network configuration. 
for summer 1989; 3DMS'89, 3day moving averages for summer The inverse distance methods were also successful in 
1989; 7DS'89, weekly averages for summer 1989; 7DMS'89, 'converting' Class B stations to Class A but were 
weekly moving averages for summer 1989. less effective than co-kriging. 

The RMSIE of  individual weather variables can 
also be computed. If  measurement of  individual 

Table 4 
Improvement in RMSIE of Et r (mm day -I ) at Garden City for different data sets using different classes of weather stations, based on 
reference configuration 

Data used Number of stations RMSIE (mm) % Reduction in RMSIE 

Inv. Inv. 2 Kriging Inv. Inv. 2 Kfiging 

Daily, summer 1989 6A 1.8 1.5 1.4 0 0 0 
6A + 5B 1.9 1.6 1.4 - 1 - 4  2 
6A + 10B 1.9 1.7 1.4 - 5  - 10 1 
llA 1.9 1.7 1.4 - 3  - 7  2 
l lA+ 5B 2.0 1.8 1.4 - 7  -13 2 
16A 2.0 1.8 1.4 - 10 - 16 2 

3 day moving averages, summer 1989 6A 1.4 1.2 1.1 0 0 0 
6A+5B 1.4 1.2 1.1 -1  - 5  2 
6A + 10B 1.5 1.3 1.1 - 5  - 12 1 
llA 1.4 1.3 1.1 - 3  - 8  4 
l lA+5B 1.5 1.3 1.1 - 7  -14 3 
16A 1.5 1.4 1.0 - 9  - 18 6 

7 day moving averages, summer 1989 6A 1.1 0.9 1.0 0 0 0 
6A + 5B 1.1 0.9 0.9 2 - 3 4 
6A+ 10B 1.1 1.0 0.9 -1  - 8  3 
llA 1.1 0.9 0.9 1 - 5  5 
l lA+5B 1.1 1.0 0.9 - 2  -10 4 
16A 1.1 1.0 0.9 - 5 - 13 7 
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Fig. 4. Selected case-study network configurations. (a) Six Class A weather stations; (b) six Class A and five Class B weather stations; (c) 
six Class A and ten Class B weather stations; (d) 11 Class A weather stations; (e) 11 Class A and five Class B weather stations. 
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weather variables were a major objective, a network Table 3 shows the per cent reduction (from a refer- 
design could be based on these errors rather than ence configuration, which is six Class A weather 
errors in E t  r. stations) in RMSIE values of E t  r at Dickens by 

using different numbers of Class A and Class B 
7.3. Par t i a l  w e a t h e r  s ta t ion  n e t w o r k  eva lua t ion  weather stations. Both Class A and Class B weather 

stations are actually full weather stations in this 
The results of RMSIE values using full weather study; we simply ignore the available solar radiation 

stations were compared with those obtained with the at the assumed Class B weather stations. 
introduction of Class B weather stations in the case The reduction in RMSIE values compared with 
study area. These RMSIE values are reduced when the first configuration ranges from 35 to 55% for the 
Class B stations are added to the network. The chosen configurations and data sets used for interpo- 
advantage of partial weather stations is of course lation at Dickens, a station in the middle of the 
cost. They may be used to reduce interpolation errors network. Table 4 presents the same results for Gar- 
when inserted into a network of Class A weather den City, one of the outlying fringe stations in the 
stations or can be a part of the design of a new network. In this case, the reduction in RMSIE was 
network, much less, ranging from 1 to 5%. Tables 3 and 4 

A case study was used to evaluate performance of suggest that the improvement in estimation obtained 
'mixed'  networks by using the Dickens and Garden by adding five Class B stations is almost as great as 
City locations as fictitious points. Six network con- that of five Class A stations. 
figurations were used in this study, some showing 
mixture of Class A and Class B weather stations. 
One such configuration is shown in Fig. 1, in which 8. Network design methods 
all 16 stations are used as Class A stations. Five 
other network configurations are shown in Fig. 4. One rarely has the flexibility to locate stations 

ideally. However, it is instructive to consider the 
question of how one would arrange stations in an 

600 .A ideal case. Four configurations for the general net- 
(e) ~'*" 0 ~  ~"~s~ work design were compared in terms of kriging sA 

variances for an assumed spatial structure. Fig. 5 
000-~,~ shows these configurations: (a) eight-station configu- 

lrt~r 

=A ~ , , ,  • B NEBP&$~ ration; (b) four-station-diagonal configuration; (c) 
A• J ~  four-station-square configuration; (d) three-station 

configuration. The results are shown in Fig. 6. These 400- I;¢~f ]] • X te~r~ 
• A results show that the kriging variances for eight-sta- 

s ~  A ~ tion and four-station-diagonal configurations are 
300- • B equal and are lower than the kriging variances of the 

COLORADO other two configurations. Interestingly, the four cor- 
s ~  c~ A ner stations of the eight-station configuration have 

~- ~ very small negative kriging weights for interpolation 

KANSAS ~A at the point of interest and add nothing to the estima- 
tion. Thus a four-station diagonal arrangement would 

i~- be preferred in an ideal case. 
c,% ~ As a convenient tool for comparison of alternative 

A configurations, the RMSIE can be plotted against the 
number of weather stations and their cost. Fig. 7 

0 i~0 2~ ~ ~0 500 shows such graphs. In this figure, Class A weather 
)istonce of Stations, km 

stations are assumed to have a cost of $10000, and 
Fig. 4. (continued). that of Class B weather stations is $4500. Using 
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i 

a: Eight Stations Configuration b: Four Stations Diagonal 
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$ 

m 

¢: Four Stations Square d: Three Stations Configuration 

Fig. 5. Different general configurations of network design, n ,  Weather station; X, point of interest. 

graphs such as this, one can easily see the tradeoffs study. Spatial correlations of maximum tempera- 
between interpolation error and budget, and can ture, solar radiation, E t  r and mean temperature 
choose the number and type of weather stations for are better than those of relative humidity, wind 
redesign of this network. If no historic data are run and minimum temperature. Therefore it is 
available for estimating spatial correlation structures, logical to include the latter three variables in 
then data from a similar climatic region may be used. partial (Class B) weather stations at closer spac- 
It should be recalled, however, that the method ings than full (Class A) weather stations. 
proposed here does not require a long-term record. 2. Of the three interpolation techniques studied, 

kriging interpolation provided the lowest RMSIE, 
and inverse distance-square interpolation provided 

9. Conclusions a lower RMSIE than inverse distance interpola- 
tion. Co-kriging was found to improve estimates 

1. The spatial structures of all weather variables over ordinary kriging when partial weather sta- 
used to compute Etr are found to follow linear tions are included in an agricultural meteorology 
models up to a distance of 600km in the case network. 
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Fig. 6. Comparison of kriging variances for general configurations of different network design. 
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Fig. 7. Cost effectiveness of different classes of weather stations on kriging RMS1E at Dickens for summer 1989 data (Class A weather 
station costs US$10000; Class B weather station costs US$4500). 
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3. The kriging method suggested here does not use ( k P a ° C - t ) ,  R n is net radiation (MJ m -2 day-1), G 
temporal correlation of weather variables and is soil heat flux to the surface (MJ m -  2 day- l) (where 
therefore does not require a long-term record of 
weather data. G = 0 . 3 7 7 [ T -  (T_ l + T_ 2 + T_ 3 ) /3  ] (A3) 

4. For the case study, estimates of Et r from interpo- where T is the mean daily air temperature (°C) and 
lating weather variables and computing Et r were T_~ is the mean air temperature for the ith previous 
comparable with those from computing Etr and day; the daily values of G are small and assumed to 
then interpolating. Thus, the interpolation of be zero in this study), Wf is wind function, e a - e o is 
weather variables required when using partial mean daily vapor pressure deficit (kPa), and 6.43 is a 
weather station networks results in little loss of constant of proportionality (MJm -2 day-1 kPa - 1). 

accuracy. Bosen's formula for saturation vapor pressure, 
5. A mixture of full and partial weather stations may when differentiated, gives A that varies with temper- 

have a distinct cost advantage compared with a ature (Jensen et al., 1990): 
network composed of full weather stations only. 

6. A comparison of kriging errors and costs of alter- A = 0.200(0.00738T + 0,8072) 7 - 0.000116 (A4) 
native weather monitoring network configurations 
may be used a basis for network design or im- and 3/can be computed as 

provement. This design approach may be most cpP 
applicable to the Third World, where resources 3, = 0.622"----~ (A5) 
are severely limited, but it also can be used in 
developed countries to reduce network costs, where P is the average station barometric pressure 

(kPa) (where 

P = 101.3 - 0.01055E (A6) 

Appendix A and E is elevation above mean sea level (m)), 0.622 
is the ratio of the molecular mass of water to the 
apparent molecular mass of dry air, and Cp is spe- 
cific heat of air at constant pressure (Cp = 1.003 × 

A.1. Computation o f  reference evapotranspiration 10 -3 MJ kg-  1 o C-  1). 

(Etr) R n can be estimated by the solar radiation data: 

The Penman combination equation, modified for Rn = ( 1 - a ) R  s - R  b (A7) 

estimating alfalfa-based reference Et r (in mmday -1) where a is reflected shortwave radiation fraction, 
has been given by Jensen et al. (1990): called albedo ( a  = 0.23 for commercial irrigated 

crops), R s is incoming shortwave solar radiation 
~ y  (MJm -2 day-l) ,  and R b is net outgoing radiation 

LEt~ = A A+_____T ( R ,  - G)  + 6.43 Wf ( e a - -  e d )  (MJ m -  2 day-1 ), which can be computed as 

(A1) ( Rs ) 
R b=  a - - + b  Rbo (A8) 

Rsn 
where L is latent heat of vaporization (MJ kg-  l ) and 
can be computed as where Rbo is net outgoing longwave radiation on a 

clear day and may be estimated as follows: 

L = 2 . 5 0 1 - 2 . 3 6 1 × 1 0 - 3 T  (T°C) (A2) R b o = ( a l + b l  ef~d)(4 .903×10-9)T 4 (A9) 

Et r is reference evapotranspiration (mm day- l ) ,  A is where T k is average daily air temperature (K). The 
slope of the vapor pressure-temperature curve values of experimentally determined coefficients a, 
(kPa °C- 1), 3' is the psychrometric constant b, a 1 and b I are taken from Jensen et al. (1990). 
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Rso is solar radiation for cloudless skies References 
( M J m  -2 day -1)  and can be computed as follows 
(Jensen et al., 1990): Amegee, K.Y., 1985. Application of geostatistics to regional 

evapotranspiration. Ph.D. Dissertation, Oregon State Univer- 
Rso = A '  + B ' c o s [ ( 2 , r : D / 3 6 5 )  - C ' ]  (A10)  sity, Corvallis, 176 pp. 
where A' = 31.55 - 0.273Lat + 0.0008 E, B' = Clark, I., 1982. Practical Geostatistics. Elsevier Applied Science, 

London, 129 pp. 
- 0 . 2 9 9  + 0.268Lat-4-0.0004E, D is the calendar Duke, H.R., Buchleiter, G.W. and Heerman, D.F., 1985. The 
day (1-365) ,  C' is the phase constant for the longest meteorologic and agronomic theory incorporated in the USDA 
day (normally 172), and Lat is latitude (°N). ET computation program SCHED. USDA-ARS, Colorado State 

The Wf is usually determined by regression analy- University, Fort Collins, 11 pp. 
sis: Gandin, L.S., 1970. The planning of meteorological station net- 

works. WMO Tech. Note, 111. 
Wf = a W + bwU 2 ( A l l )  Harcum, J.B. and Loftis, J.C., 1987a. Spatial interpolation of 

Penman evapotranspiration. Trans. ASAE, 30(1): 129-136. 
where a w and b w are the regression coefficients, and Harcum, J.B. and Loftis, J.C., 1987b. Design and evaluation of 
U2 is the daily wind travel at 2 m above the ground regional weather monitoring networks. Trans. ASAE, 30(6): 
(kmday  -~). The equations for the regression coeffi- 1673-1678. 
cients have been described by Jensen et al. (1990): Hubbard, K.G. 1994. Spatial variability of daily weather variables 

in the high plains of the USA. Agric. For. Meteorol., 68: 

a w = 0.4 + 1.4exp - ~8  (A12)  Hubbard, K.G., Rosenberg, N,J. and Nielsen, D.C., 1983. Auto- 
mated weather data network for agriculture. J. Water Resour. 
Plann. Manage., 109: 213-222. 

and Isaaks, E.H. and Mohan Sfivastava, R., 1989. Applied Geostatis- 
( [ ( D _ 2 4 3 ) ] 2 }  tics. Oxford University Press, New York, 561 pp. 

Jensen, M.E. (Editor), 1973. Consumptive use of water and 
b w = 0.007 + 0.004exp - ~-j (A13) irrigation water requirements. Inig. Drainage Div., American 

Society of Civil Engineers, New York, 215 pp. 

where D in the above equations is the calendar day Jensen, M.E., Barman, R.D. and Allen, R.G., 1990. Evapotranspi- 
ration and Irrigation Water Requirements. A manual prepared 

of the year. Jensen et al. (1990) also recommended by the Committee on Irrigation Water Requirements of the 
the values of  these coefficients for the alfalfa-related Irrigation and Drainage Division of the American Society of 
combination equations for humid and arid areas. Civil Engineers, New York, 332 pp. 

The vapor pressure deficit ( e  a -- e d) was calcu- Ripley, B.D., 1981. Spatial Statistics. Wiley, New York, 252 pp. 
lated using the following expression for estimating Tabios, G.Q. and Salas, J.D., 1985. A comparative analysis of 

techniques for spatial interpolation of precipitation. Water 
the saturation vapor pressure given by Bosen (Jensen Resour. Bull., 21(3): 365-380. 
et al., 1990) and using observed values of  relative Vieira, S.R., 1983. Geostatistical analyses of some agronomical 
humidity to calculate actual vapor pressure: observations. Ph.D. Dissertation, University of California, 

Davis, 261 pp. r 

e a = 3 .38639[(0 .00738T + 0.8072) 8 

-0 .00001911.8T + 481 + 0.001316] (A14)  


