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ABSTRACT In order to estimate rainfall magnitude at unmeasured locations, this entry to 
the Spatial Interpolation Comparison of 1997 (SIC'97) used 2-dimensional, anisotropic, 
inverse-distance weighting interpolator (IDW), with cross-validation as a method of 
optimizing the interpolator's parameters. A jackknife resampling was then used to reduce 
bias of the predictions and estimate their uncertainty. The method is easy to programme, 
"data driven", and fully automated. It provides a realistic estimate of uncertainty for each 
predicted location, and could be readily extended to 3-dimentional cases. For SIC97 
purposes, the IDW was set to be an exact interpolator (smoothing parameter was set to 
zero), with the search radius set at the maximum extend of data. Other parameters were 
optimized as follows: exponent = 4, anisotropy ratio = 4.5 and anisotropy angle = 40°. The 
results predicted by the IDW interpolator were later compared with the actual values 
measured at the same locations. The overall root-mean-squared-error (RMSE) between 
predicted and observed rainfall for all 367 unknown locations was 6.32 mm of rain. The 
method was successful in predicting 50% and 65% of the exact locations of the twenty 
highest and lowest measurements respectively. Of the measured values, 65% (238 out of 367 
data points) fell within jackknife-predicted 95% confidence intervals, uniquely constructed 
for each predicted location.  
KEYWORDS: cross validation, jackknife, uncertainty, IDW, anisotropic, automated, spatial 
interpolation, GIS.  
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1. Introduction  
 
In this article, an anisotropic inverse distance weighting interpolator (IDW) is used to 
make the required estimates of rainfall at 367 locations, based on a "training" set of 
rainfall measurements at 100 rain-gauges located throughout Switzerland. The method 
consists of two parts. First, the optimum set of parameters for the IDW method is selected 
via cross-validation and the estimates are made using this optimal interpolator. Second, 
the uncertainty of each of the estimates is calculated via the jackknife procedure.  
        The method is data-driven and fully automated (i.e., does not require preprocessing), 
which could be of value in an emergency situation requiring rapid yet justifiable results. 
Although the method attempts to optimize all the IDW parameters (i.e., weighting power, 
smoothing parameter, anisotropy ratio, anisotropy angle, and search radius) some 
parameters which are known or measured a priori (such as anisotropy angle determined 
by known wind direction), can either be fixed or limited to a user-defined range. This 
could result in improved performance and added realism of the interpolator. As applied in 
this paper, the technique fixes two and optimizes the other three out of five possible IDW 
parameters.  
        Compared with other methods, most notably kriging, the IDW method is simpler to 
programme and does not require pre-modeling or subjective assumptions in selecting a 
semi-variogram model (Henley, 1981). It provides a measure of uncertainty of the 
estimates that is directly related to the values being estimated, in contrast to kriging 
standard deviation which is based on the modeled semi-variogram (Adisoma and Hester, 
1995). In addition, the IDW method is applicable to datasets of small size for which the 
modeled semi-variograms are very difficult to fit (Rasmunsen-Rhodes and Mayers, 
1993), and it is flexible enough to model the variables with a trend or anisotropy present. 
The method is not limited to predicting rainfall measurements and it can be useful in 
problems as diverse as mapping of crop spraying, estimating grade and exploration 
feasibility of mining reserves, monitoring extend of contaminated groundwater plumes or 
quantitatively assessing the extent of contamination in aquatic sediments (Tomczak and  
McCorquodale, 1997).  

2. Methods  

The object of any two-dimensional interpolation is to estimate the value of a parameter 
(Z), at the unmeasured locations (Zj) based on finite set of measurements of this 
parameter at other locations (Zi). In SIC97 dataset, the parameter Z represents daily 
rainfall intensity. The IDW algorithm, as applied to each location being estimated, is 
based on Equation 1 (Keckler, 1995; Song and DePinto, 1995):  

                                                                                  (1)  
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Where Zj is the interpolated value of a grid node, Zi are the neighboring data points, hij 
are the distances between the grid node and data points, β is the weighting power, and δ 
is the smoothing parameter. In an isotropic case (i.e., when the weights are not a function 
of direction), Equation 1 can be used "as is" with the separation distance (hij) calculated 
by a simple Euclidean distance equation:  

                                                                             (2)  

Where: ∆ x and ∆y are the horizontal and vertical distances between the interpolated node 
"j" and the contributing data point "i".  
        In situations when inclusion of anisotropy is appropriate (such as in rainfall 
intensity, likely affected by wind direction and topography) the actual distance (hij) is 
replaced by the effective distance (hij-eff) which is calculated below (Keckler, personal 
communication, 1997). The equation is broken down for clarity.  

                              (3)  

Where θ is the anisotropy angle (the direction of "preferred" anisotropic axis, counter-
clock-wise from positive x-axis) and ρ is the anisotropy ratio (in isotropic case, ρ =1). 
        Conceptually, the effective distance can be thought of as shortening the distance 
between a data point and the interpolated node by the factor equal to the anisotropy ratio. 
The data point's relative influence on the interpolated node increases as the direction of 
line between the two points approaches the anisotropy angle. This concept is illustrated in 
Figure 1.  

2.1 Cross-validation  

IDW interpolator is driven by the set of parameters whose values are usually chosen at 
the operator's discretion. Parameters include:  

• β - the weighting power (exponent) 
• δ - the smoothing parameter 
• ρ - the anisotropy ratio 
• θ - the anisotropy angle 
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In addition, the search radius can be adjusted, determining the number of neighboring 
data points that are used when interpolating each node. Restricting the search radius can 
make the algorithm more efficient when the sample size is large and it can provide means 
to tackle a "trend" in the data (i.e., lack of stationarity). 

 
 

Figure 1. Illustration of the concept of anisotropy-corrected effective distance. 
  

Searching algorithm can also be fine tuned by incorporating directional search 
(e.g., searching quadrants) or treatment of repeated measurements (e.g., averaging 
datapoints that are within some threshold distance). Although all of the above parameters 
can be adjusted, often some of them are known a priori, such as the anisotropy angle (but 
usually not ratio). Hence, based on the knowledge of the nature of data being sampled 
and processes involved (e.g., prevailing wind direction etc.) some IDW parameters can be 
fixed before the calculations start. Values of other parameters have to be selected and this 
choice greatly affects the results of the interpolation.  
        Although no measures are known that would or could be universally applied to 
choose the optimal set of parameters, cross-validation (a.k.a. "leaving-one-out" method) 
is often used to select an interpolator from finite number of candidates (Davis, 1987). The 
method is based on removing one data point at a time, performing the interpolation for 
the location of the removed point using the remaining samples (i.e., pretending that 
removed point does not exist), and calculating the difference (residual) between the 
actual value of the removed data point and the estimate for this point obtained from 
remaining samples. This scenario is repeated until every sample has been, in turn, 
removed. The overall performance of the interpolator is then evaluated as the root-mean 
of squared residuals (Davis, 1987; Song and DePinto, 1995).  

                                                                 (4)  
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where RMSE stands for root-mean-squared error, Zi(int) is the interpolated value of 
variable at point i estimated from remaining n-1 points, Zi is the measured value of 
variable at the removed point i, and n is the number of data points.  
        Low root-mean-squared error (RMSE) indicates an interpolator that is likely to give 
reliable estimates for the areas where the rainfall intensity is not known. The cross-
validation is performed with different set of parameters each time and the set with the 
lowest RMSE is taken as optimal. The step size and range of values for each parameter 
during the fitting procedure is user-specified. With IDW parameters selected via cross-
validation, a jackknife resampling can be used to reduce bias of predicted values and to 
estimate their uncertainty.  

2.2 Jackknife  

In jackknife, all n samples (measured locations) are used to estimate parameter Z at 
interpolated node "j" (ZALL). The jackknife then proceeds by removing one observation at 
a time from the original dataset (one rain gauge from 100 known training locations), and 
repeatedly estimating value of parameter Z at node "j" from the remaining (i-1) data 
points. Let Z-ibe the corresponding estimate when ith sample is omitted. A pseudo-value 
(Z*i) corresponding to each omitted point, is calculated as follows (Tukey, 1970):  

                                           (5)  

where n is the sample size, ZALL is the parameter estimate for node j using all n data 
points, Z-1 is the parameter estimate when ith sample is removed, Z*

i is a pseudo-value 
estimate for node "j" corresponding to ith data point being  removed.  
        The jackknifed estimator of parameter Z at location "j" is the mean of all pseudo-
values for the node "j":  

                                                                                            (6)  

where ZJ is the jackknife estimator of parameter Z.  
        The jackknife procedure is then repeated and the values of ZJ and σJ are calculated 
for each estimated node location "j". The use of pseudo-values allows to assess the 
precision of the jackknife estimator through estimated standard error σJ which is defined 
as (Adisoma and Hester, 1996; Efron and Gong, 1983):  

            (7)  

If pseudo-values are treated as if there were n independent estimates, a confidence 
interval on the estimate can be constructed. Under the assumption that the statistic: (ZJ-
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Z)/σJ follows Student's t distribution, a 100(1-α ) % confidence interval on ZJ is given by 
(Adisoma and Hester, 1996; Efron and Gong, 1983):  

                                                                                           (8)  

where tα/2,n-1   is the is the value of CDF of Student-t distribution at 1-α confidence level, 
with n-1 degrees of freedom.  

This approximation may not always be valid (Miller, 1964), but it should perform 
quite well providing the value of parameter Z does not depend essentially on only one or 
two sample points zi (Tukey, 1970). Larger sample size will also improve the validity of 
such constructed confidence interval, courtesy of the Central Limit Theorem.  

        Figure 2 schematically shows the procedures involved in both cross-
validation and jackknifing based on 5 hypothetical data-points for the location "j" being 
estimated.  

3. Results  

The interpolation method used here consisted of two steps: first the IDW parameters were 
optimized via cross-validation. To make the calculations more efficient and shorten the 
processing time, two parameters considered relatively less important were fixed a priori: 
the search radius was set to the maximum extent of the data and the smoothing parameter 
was set to zero (i.e., resulting in an exact interpolator since the uncertainty of individual 
rain-gauge measurements were assumed to be much lower than the uncertainty of the 
predictions). The remaining three parameters were simultaneously adjusted during the 
procedure (exponent: range 1 to 10, step 0.5; anisotropy ratio: range 1 to 10, step 0.5; 
anisotropy angle: range 0º to 170º, step 10°).  The procedure produced the set of optimal 
(lowest cross-validated RMSE = 56.44) IDW parameters: Exponent = 4, Anisotropy 
Ratio = 4.5 and Anisotropy Angle = 40°.  A jackknife was then used for each estimated 
point to reduce bias and to estimate the standard error and the resulting confidence 
intervals for each estimated point. 
        After the entries to the SIC'97 were submitted, the true measured rainfall values at 
all the 367 locations to be estimated were released to participants to allow for the 
evaluation of the performance the interpolators used. The performance of the IDW 
method along with the statistics of true measurements for all 367 estimated data points 
are listed in Table 1. The estimators of method's performance selected by SIC'97 
organizers were: Root-Mean-Squared  Error (RMSE),  Mean Absolute Error (MAE),  and 
Mean Relative Error (MRE). Since the presented method has the ability of calculating the 
error and confidence interval for each estimated point, the summary of lower and upper 
95% confidence levels for each calculated statistic, based on all predicted values, is also 
listed. 

 23 



 
Figure 2  A schematic flow diagram of cross-validation and jackknifing for five hypothetical observed data 

points and the prediction made at node "j". 
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Table 1 Comparison of the estimated and measured values (n=367), 1/10 mm of rain. 

Method min max mean median s.d. MAE MRE RMSE 

Observed 0.0 517.0 185.8 162.0 111.2       

IDW (all points) 16.0 562.5 185.9 151.9 104.0 44.0 0.543 63.2 

Jackknife "Corrected" IDW 0.0 787.6 185.3 145.2 127.0 58.5 0.565 83.9 

Lower 95% Confidence Int. 0.0 344.1 117.2 99.5 93.4       

Upper 95% Confidence Int. 22.2 1275.8 264.4 209.2 173.3       
 
4. Discussion  
 
As indicated in Table 1, the jackknife corrected estimates did not improve the 
performance of the interpolator for this particular application (higher RMSE than original 
prediction), and therefore the set of estimates using all training points (RMSE = 63.2) 
will be used in the remainder of the discussion. Jackknife is still used for estimates of 
uncertainty of IDW predictions.  
        Figure 3 shows the observed (true) rainfall measurements plotted against predicted 
ones for the same locations. The linear correlation coefficient of 0.83 confirms relatively 
good overall agreement (with no regard to spatial component in the data) between 
predicted and measured values.  

 
Figure 3.  Observed vs. predicted rainfall for 367 "unknown" rain-gauges. 

The overall predicted contour map is shown in Figure 4. The black circles show the 
relative magnitude of predicted rainfall (circle diameter) and location of all the 100 
training sites from which the predictions were constructed. Contours exhibit a strong 
anisotropy in an approximate NE-SW direction consistent with the anisotropy ratio of 4.5 
and anisotropy angle of 40° counter-clock-wise from the east (N60°E) used in the IDW 
interpolator.  
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Figure 4 Predicted rainfall contours based on 100 given training points, superimposed on Switzerland's 

boarder, shown (size of dots is proportional to the magnitude of the recorded rainfall). 

        The bias of the predictions and independence of residuals from the magnitude of 
predicted values can be assessed from Figure 5. It shows the distribution of errors (value 
predicted minus value observed, or residual) as a function of the magnitude of observed 
values.  

 
 

Figure 5.  Distribution of residuals as a function of the magnitude of observed rainfall. 

The residuals seems to have no overall bias (mean = 0.0, s.e.=3.3 , n = 363), with 
a weak tendency of being negatively correlated with the magnitude of observed rainfall 
(Pearson's R = -0.39). The absolute value of errors show weak positive correlation with 
the magnitude of the rainfall (R = 0.31). Although this linear correlation analysis does not 
capture the spatial nature of the dataset, it could indicate the possibility of a problem 
related to the underprediction of high values, which may be of an issue from the risk 
analysis perspective. The spatial distribution of errors (predicted versus observed rainfall 
values) is illustrated in Figure 6.  
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Figure 6 Error between observed and predicted values (predicted minus observed) with the size of 
the dots proportional to the absolute value of the error. Blue circles signify negative errors (under-
prediction) and red circles indicate positive errors (over-prediction). 

Figure 7 shows the distribution of predicted uncertainties of estimated values as 
calculated from Equation 7 (i.e., standard errors calculated via jackknife, for each 
estimated location).  

 
Figure 7 The value of the calculated jackknife standard error for each predicted point. Size of symbols is 

proportional to the magnitude of the error and uses the same scale as Figure 6. 
 

        When Figure 6 and 7 are compared, the overall pattern and magnitude of predicted 
uncertainties and observed errors is similar, with the highest uncertainty (for both actual 
errors and predicted uncertainties) concentrating in the west and south part of the country. 
Of the measured values, 65% (238 out of 367 data points) fell within 95% confidence 
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interval as predicted for each estimated point with Equation 8  (i.e., based on jackknifed 
standard error for each predicted point).  
        The ability to predict extreme values is an important benchmark in evaluating the 
performance of an interpolator. Some of the highest measured rainfall values were 
included in the set of 100 training data points and, therefore, were not estimated via 
interpolation. To facilitate a fair discussion on the method's performance, only the 
extreme values in the predicted dataset (367 data points) are included in the following 
section. Figure 8 shows the distribution of ten highest and lowest rainfall values as 
requested by SIC97 organizers (both predicted and observed as indicated in the legend).  
        Of the extreme values, 20% of the highest and 30% of lowest values were predicted 
accurately with the overall pattern and approximate location for predicted and observed 
extremes being similar. It was felt that the comparison based on the arbitrary 10 extreme 
values (only 2.7% of all the values estimated) may not be representative for measuring 
the method performance. If a similar comparison of the predicted versus observed 
extremes is made based on 20 highest and 20 lowest points (Figure 9), the efficiency of 
correctly predicting highest and lowest locations increases to 50% and 65% respectively. 
 

 
 

Figure 8 Ten highest and ten lowest rainfall values.  Red symbols signify high values, blue symbols show 
low values. Circles represent observed values, crosses represent predicted values. 

 
        Taking into account the fact that the rainfall data set used in the SIC'97 comparison 
was related to the Chernobyl accident (which was not known by participants before the 
entries were submitted), the interpolators allowing for rapid estimates without the need of 
preprocessing are to be preferred. The automated IDW interpolator appears to satisfy this 
mandate.  
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Figure 9  Twenty highest and twenty lowest rainfall values.  Red symbols signify high values, blue 
symbols show low values. Circles represent observed values, crosses represent predicted values. 

 
       The anisotropic IDW with cross validation and jackknife is certainly not a "silver 
bullet" for contouring all spatially distributed variables. As with any spatial interpolation 
method, one could concoct situations for which models other than IDW were more 
applicable. It appears, however, that considering its ease of programming, automation, 
flexibility, objectivity, ability to measure the uncertainty of the predictions, and a good 
performance of the IDW model with this and other data sets, the method can be 
considered a sound, robust, general purpose 2D interpolator. The method could also be 
readily extended to 3-dimentional cases.  
        The modified IDW method, as described in this paper, allows for fast estimates even 
with moderate computing power (Pentium133 PC), as well as for assessing the 
uncertainly of these estimates. The algorithm can be programmed as a stand-alone 
application or as a part of a GIS Decision Support System. For the purpose of SIC'97, all 
the procedures were programmed in GS-Scripter (a modified version of BASIC) and used 
IDW interpolation subroutine included in Surfer3D by Golden Software Inc. (Keckler, 
1995), via OLE 2.0 automation.  
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