Introdução à Probabilidade

Silvia Shimakura

silvia.shimakura@ufpr.br

Probabilidade

•O que é probabilidade?

Medida que quantifica a incerteza frente a um acontecimento futuro.

Como quantificar incerteza?

Definição clássica: relaciona eventos favoráveis com eventos possíveis.

Definição frequentista: baseada em repetições de um experimento, sob condições semelhantes, um grande número de vezes.

Problema trivial 1

- •Experimento 1: Lançamento de um dado balanceado
- •Espaço amostral: conjunto dos resultados possíveis $E=\{1, 2, 3, 4, 5, 6\}$
- •Evento A: face impar e menor que 5 A={1, 3}
- •Evento B: face par

$$B=\{2, 4, 6\}$$

Cálculo de probabilidades

- •Experimento 1: eventos simples são equiprováveis
- •Probabilidade: número de resultados favoráveis ao evento de interesse dividido pelo número total de eventos possíveis
- •Experimento 1:

$$P(A) = 2/6$$
 $P(B) = 3/6$

Problema trivial 2

- •Experimento 2: Lançamento de 2 dados balanceados
- •Espaço amostral: 6x6=36 elementos
- •Evento F: a soma dos dois valores é 10 $F = \{(4,6), (5,5), (6,4)\}$
- •Evento G: os dois valores são iguais $G=\{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$
- •Evento H: os dois valores são pares $H=\{(2,2), (4,4), (6,6)\}$

Cálculo de probabilidades

- •Experimentos 2: eventos simples são equiprováveis
- •Probabilidade: número de resultados favoráveis ao evento de interesse dividido pelo número total de eventos possíveis
- •Experimento 2:

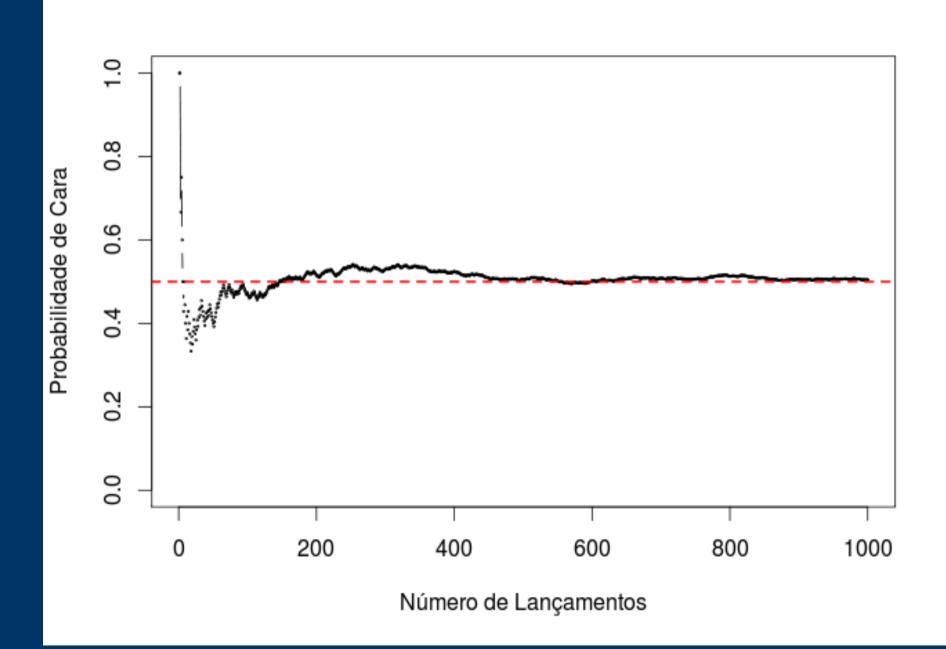
$$P(F)=3/36$$
 $P(G)=6/36$ $P(H)=3/36$

Problema menos trivial

- •Experimento 3: Lançamento de uma moeda
- •Espaço amostral: E={Cara, Coroa}
- •Evento C: Cara

•Eventos simples são equiprováveis?

$$\bullet P(C)=?$$


Visão frequentista de probabilidade

- •E se os eventos simples não forem equiprováveis?
- •Probabilidade: frequência relativa de ocorrência do evento para um grande número de sorteios

Frequência relativa

• C: Cara O: Coroa

Resultado	С	С	С	0	С	0	0	0	Ο	0	0	С
Frequência acumulada de Caras	1	2	3	3	4	4	4	4	4	4	4	5
Número de lançamentos	1	2	3	4	5	6	7	8	9	10	11	12
Freq. relativa de caras	1/1	2/2	3/3	3/4	4/5	4/6	4/7	4/8	4/9	4/10	4/11	5/12
%	100	100	100	75	80	67	57	50	44	40	36	42

Tipos especiais de eventos

•Evento interseção: ocorrência de A e B

$$A=\{1, 2, 3, 4\}$$
 $B=\{3, 4, 5, 6\}$ $A\cap B=\{3, 4\}$

- •Evento união: ocorrência de A ou B ou ambos AUB={1, 2, 3, 4, 5, 6}
- Evento complementar de A: contém todos os elementos do espaço amostral que não pertencem a A

$$E=\{1, 2, 3, 4, 5, 6\}$$

$$\bar{A} = \{5, 6\}$$

Tipos especiais de eventos

•Eventos mutuamente exclusivos: ocorrência de um evento impossibilita a ocorrência do outro

$$A=\{1, 2\}$$
 $B=\{3, 4, 5, 6\}$ $A \cap B=\emptyset$

Propriedades de probabilidade

- $\bullet 0 \le P(A) \le 1$, para qualquer evento A
- •P(E)=1, em que E é o espaço amostral
- $P(\bar{A}) = 1 P(A)$
- •Para dois <u>eventos A e B quaisquer</u>, a probabilidade de que A ou B ocorra:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

•Se <u>A e B são mutuamente exclusivos</u>, a probabilidade de que A ou B ocorra é a soma das probabilidades.

$$P(A \cup B) = P(A) + P(B)$$

Probabilidade condicional

•É a probabilidade de B dado que A ocorreu. Notação: P(B|A)

•Para <u>A e B quaisquer</u>

$$P(B|A)=P(A\cap B)/P(A)$$

$$P(A\cap B)=P(A) P(B|A)$$

•Para A e B independentes

$$P(B|A) = P(B)$$

$$P(A \cap B) = P(A) P(B)$$

Exemplo

- •Lançamento de dois dados não viciados
- •Espaço amostral: 36 elementos com prob 1/36 cada
- •Evento B: soma dos dados é 8
- •B=?
- •P(B)=???

Exemplo (cont.)

- •Sabendo que o resultado do primeiro dado é 3, qual será a probabilidade da soma dos dois dados ser 8?
- •Evento A: primeiro dado é 3 A={(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)} \rightarrow P(A)=6/36
- •Evento B: $B=\{(2, 6), (6, 2), (3, 5), (5, 3), (4, 4)\} \rightarrow P(B)=5/36$
- •Evento interseção: $A \cap B = \{(3,5)\} \rightarrow P(A \cap B) = 1/36$
- •P(B|A)=? A e B são independentes? A e B são mutuamente exclusivos?

Exemplo: Distribuição de peso e pressão arterial

Pressão arterial		Peso		
	Excesso	Normal	Deficiente	Total
Elevada	0,10	0,08	0,02	0,2
Normal	0,15	0,45	0,20	0,8
Total	0,25	0,53	0,22	1

- •Probabilidade de uma pessoa escolhida ao acaso ter pressão elevada?
- •Probabilidade de uma pessoa escolhida ao acaso ter pressão elevada e excesso de peso?
- •Sabendo que a pessoa tem excesso de peso, qual a probabilidade de uma pessoa escolhida ao acaso ter pressão elevada?

Exemplo: Distribuição de peso e pressão arterial (cont.)

- •Peso em excesso e pressão arterial normal são eventos mutuamente exclusivos?
- •Pressão arterial e peso são independentes?

Pressão arterial	Peso			
	Excesso	Normal	Deficiente	Total
Elevada	0,10	0,08	0,02	0,2
Normal	0,15	0,45	0,20	0,8
Total	0,25	0,53	0,22	1

Exemplo: Qualidade de teste diagnóstico

- •Suponha que existam dois estados de saúde mutuamente exclusivos e exaustivos: D+ doente e D- não doente
- Seja T+ teste positivo e T- teste negativo
- •Num estudo sobre o teste ergométrico, Wriner et al. (1979) compararam os resultados obtidos entre indivíduos com e sem doença coronariana.
- •T+: mais de 1mm de depressão ou elevação do segmento ST, por pelo menos 0,08s, em comparação com paciente em repouso.
- •D+ e D-: angiografia (teste padrão ouro).

Exemplo: Qualidade de teste disgnóstico

Doença coronariana		Teste Erç				
	T+		T-		Total	
D+	815	а	208	b	1023	a+b
D-	115	С	327	d	442	c+d
Total	930	a+c	535	b+d	1465	n

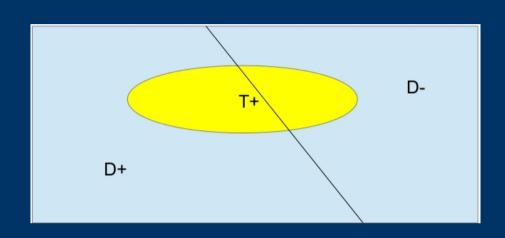
Temos interesse em responder as perguntas:

- •Qual a probabilidade do teste ser positivo dado que o paciente é doente? P(T+|D+)=
- •Qual a probabilidade do teste ser negativo dado que o paciente não é doente? P(T-|D-)=

Exemplo: Qualidade de teste diagnóstico (cont.)

 Qual a probabilidade de que uma pessoa com resultado de teste positivo realmente tenha a doença?
 P(D+|T+)=?

Teorema de Bayes


•Se A1, A2, ... An são n eventos mutuamente exclusivos e exaustivos, tais que:

$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n) = 1$$

•Pelo Teorema de Bayes:

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{P(A_1)P(B|A_1) + ... + P(A_n)P(B|A_n)}$$

Exemplo: Qualidade de teste diagnóstico

- D+ \cap D- = \emptyset
- D+ U D- = E
- Conhecidos:
 - P(D+) e P(D-)
 - P(T+|D+) e P(T-|D-)

$$P(D+|T+) = \frac{P(D+)P(T+|D+)}{P(D+)P(T+|D+) + P(D-)P(T+|D-)}$$

$$VPP = P(D + | T +) = \frac{ps}{ps + (1-p)(1-e)}$$