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ABSTRACT: Citrus sudden death (CSD) disease is a disease that affects dramatically 

citrus trees causing the progressive decline and death. It has been identified in the late 

90’s in the main citrus production area in Brazil  and since then there are efforts to 

understand the etiology as well  as the mechanisms of spreading of the disease.  One 

relevant aspect of such studies is to investigate spatial patterns of the occurrence within 

a field. Methods for determining whether the spatial pattern is aggregated or not has 

been frequently used. However it is possible to further explore and describe the data by 

means  of  adopting  an  explicitly  model  with  which  is  possible  to  discriminate  and 

quantify  effects  by  attaching  parameters  to  covariates  which  represents  aspects  of 

interest to be investigated. One of the alternatives is the adoption of autologistic models, 

which extends a usual logistic model in order to accommodate spatial effects. In order 

to implement such model it is necessary to take into account the reuse of data to built 

spatial covariates, which requires extensions in methodology and algorithms to assess 

the  variance  of  the  estimates.  This  work presents  an  application of  the  autologistic 

model to data collected at 11 time points from citrus fields affected by CSD. It is shown 

how the autologistic model is suitable for investigating diseases of this type, as well as a 

description of the model and the computational aspects necessary for the model fitting.
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MODELO AUTOLOGÍSTICO COM APLICAÇÃO A MORTE SÚBITA DOS 

CITRUS

RESUMO: A morte súbita dos citros (MSC) é uma doença com efeitos dramáticos em 

árvores de citros causando declínio progressivo e morte. Ela foi identificada no final da 

década de 90 em uma das principais áreas de produção no Brasil e desde então esforços 

são empregados para entender a sua etiologia e os seus mecanismos de dispersão. Um 

aspecto relevante para estudos é a investigação do padrão espacial da incidência dentro 

de um campo. Métodos para determinar se o padrão espacial é agregado ou não têm 

sido  freqüentemente  utilizados.  Entretanto  é  possível  explorar  e  descrever  os  dados 

adotando  um modelo  explícito,  com o  qual  é  possível  discriminar  e  quantificar  os 

efeitos  com  parâmetros  para  covariáveis  que  representam  aspectos  de  interesse 

investigados. Uma das alternativas é adoção de modelos autologísticos, que estendem o 

modelo de regressão logística para acomodar efeitos espaciais. Para implementar esse 

modelo é necessário que se reuse os dados para extrair  covariáveis espaciais,  o que 

requer extensões na metodologia e algoritmos para acessar a variância das estimativas. 

Este trabalho apresenta uma aplicação do modelo autologístico a dados coletados em 11 

pontos no tempo em um campo de citros afetado pela MSC. É mostrado como o modelo 

autologístico é apropriado para investigar doenças desse tipo, bem como é feita uma 

descrição do modelo e dos aspectos computacionais necessários para a estimação do 

modelo.

Palavras  chave:  Estatística  espacial,  doença  de  plantas,  variável  resposta  binária, 
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pseudoverossimilhança, bootstrap

INTRODUCTION

Brazil is the major citrus region in the world and is responsible for about 53% of 

the  worldwide  orange  juice  production  and  for  80%  of  concentrated  form.  Citrus 

growers, industry and scientists are constantly aiming for higher productivity, control of 

the  production  process  and capacity.  Such  targets  are  threaded  by  various  diseases 

among  which  is  Citrus  sudden  death  (CSD),  a  new  and  destructive  disease  first 

observed in the late 90’s in southwest of Minas Gerais State and northern of São Paulo 

State, Brazil (Gimenes-Fernandes & Bassanezi, 2001). This disease causes the decline 

and  death  of  sweet  oranges  (Citrus  sinensis (L.)  Osb.)  and  some  mandarins  (C. 

reticulata Blanco)  trees  grafted  onto  either  Rangpur  lime  (C.  limonia Osb.)  or 

Volkamerian  lemon (C.  volkameriana V.  Tem.  & Pasq.),  the  most  used  rootstocks 

because under São Paulo conditions citrus on these rootstocks can be grown without 

irrigation (Gimenes-Fernandes & Bassanezi, 2001; Román et al, 2004).

Since its first report, many efforts have been done to understand the etiology as 

well  as the mechanisms of spreading of the disease.  Search for infectious agents  in 

CSD-symptomatic  trees  including  fungi,  exogenous  and  endogenous  bacteria  and 

phytoplasmas, and viroids produced negative results (Bassanezi et al., 2003; Román et 

al., 2004).  Only two virus, CTV and a new virus Tymoviridae, tentatively called Citrus 

sudden death associated virus (CSDaV), have been found in CSD-affected trees, and 

their  association  with  the  disease  has  been  studied  (Coletta  Filho  et  al.,  2005; 

Maccheroni et al., 2005), but the extreme variability and complexity of CTV and the 

very low concentration  of CSDaV make the CSD etiology very difficulty  to  prove. 

88



Before  CSD-causal  agent  identification,  studies  on  spatial  patterns  of  CSD-affected 

plants could be useful to make inferences about the nature of causal agent.

Several methods, such as the analysis of ordinary runs (Madden et al., 1982), 

intraclass correlation (k) (Xu & Ridout, 2000), binomial index of dispersion (D) and 

binary  form  of  Taylor’s  power  law  (Madden  &  Hughes,  1995)  and  spatial 

autocorrelation  analysis  (Gottwald  et  al.,  1992),  have  been  used  to  investigate  the 

development of citrus sudden death epidemics in space, as well as the resulting spatial 

patterns (Bassanezi  et  al.,  2003;  Bassanezi  et  al.,  2005, Lima et.  al.  2006).   At  the 

individual  tree  scale,  ordinary  runs  analysis  of  CSD-symptomatic  trees  indicated 

clustering  of  symptomatic  trees  mainly  within  rows.   At  the  middle  scale  of  small 

groups of trees, the D and k indexes for various quadrat sizes suggested aggregation of 

CSD-symptomatic  trees  for almost  all  plots  within the quadrat  sizes  tested,  and the 

index of aggregation increased with quadrat size.  Estimated parameters of the binary 

form of  Taylor’s  power  law  provided  an  overall  measure  of  aggregation  of  CSD-

symptomatic trees for all quadrat sizes tested and the intensity of aggregation was also a 

function of quadrat size and disease incidence.  The largest scale tested was the entire 

plot  level.   Spatial  autocorrelation  analysis  of  proximity  patterns  suggested  that 

aggregation often existed among quadrats of various sizes up to three lag distances. 

These results were interpreted as indicating the disease is caused by a biotic factor, and 

the disease was transmitted within a local area of influence approximately six trees in 

all directions, including adjacent trees (Bassanezi et al., 2003; Bassanezi et al., 2005). 

Based on the similarities of CSD symptoms and its spatial patterns with Citrus tristeza, 

caused by Citrus tristeza virus and transmitted by aphids, the current hypothesis is that 

CSD is caused by a virus and vectored by flying vector.
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All those spatial analysis described above only allow to characterize the pattern as 

aggregated,  regular  or  random,  and  are  useful  in  preliminary  step  of  analysis  to 

accumulate  evidences  about  spatial  pattern  diagnostic  of  incidence.  A characteristic 

aspect of such methods is the fact that the spatial configuration is treated as a lattice. 

Another  possible  approach  for  the  analysis  of  large  number  of  plants  would  be  to 

consider the plants with the disease as a point process in space and use the distance 

between infected trees to infer about the spatial pattern (Spósito et. al. 2007) or using 

percolation methods to infer probabilities given the status of the neighbours (Santos et. 

al. 1998). However, such methods are not design to quantify the effects of spatial effects 

represented by covariates since they do not assume an explicitly model relating such 

covariates with the presence of the disease neither allow for other covariates of potential 

interest. One alternative investigated here is the adoption of an autologistic model which 

relates the probability of a unit become diseased given the status of neighbouring plants 

in space and/or time, taken as covariates and therefore having a associated coefficient 

parameter. The regular arrangement favors for the adoption of autoregressive type of 

models for the analysis, which allows for the detection of usual covariate effects as well 

as the assessment of the relevance of the spatial effects. The latter are particularly useful 

for  the  description  and  hypothesis  tests  on  the  patterns  of  the  disease,  which  may 

suggests propagation mechanisms and control strategies. For instance, for binary data 

such as presence/absence of the disease the autologistic model describes the probability 

of  a  tree  become  infected  given  the  status  of  the  neighbouring  trees.  The  model 

parameters  have  a  direct  interpretation  as  odds  of  being  infected,  incorporating 

explicitly  the dependence structure.  In agricultural  applications the  model  has being 

initially adopted the study the incident of Phytophthora in bell pepper (Gumpertz et al., 
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1997) with attempts to expand the model for describing spatial temporal patterns of pine 

beetles (Gumpertz et. al. 2000; Zhu et. al. 2005). Here we further explore the model 

considering the particular aspects of citrus groves and CSD. The model is presented in 

Section 2 and Section 3 reports the analysis of data collected at 11 different time points 

in  a  field  with  presence  of  CSD.  The  conclusions  and  discussion  are  presented  in 

Section 4.

MATERIAL AND METHODS

The logistic regression model is currently widely used to the analysis  of binary 

outcomes such as presence or absence of a certain attribute of interest. For presence of 

plant disease it is particularly relevant to consider possible spatial dependence given it is 

reasonable to assume that neighbouring trees are more likely to have similar  status, 

which  reflects  an  eventual  aggregation  in  the  spatial  pattern  of  the  disease.  The 

autologistic model (Besag 1972) extends the usual logistic regression accounting for 

such spatial structure by modeling the conditional probability of a tree be infected given 

the status of the neighbouring trees. 

Autologistic model

The autologistic model describes the probability ijp  of a plant in the ith row and 

jth column  having  the  disease  given  the  status  of  the  neighbouring  plants  using 

depending  on  the  value  of  a  covariate  connected  to  the  outcome  through  the  link 

function,

)()()(logit 1,1,2,1,110 +−+− ++++= jijijijiij yyyyp λλβ ,                    (1)

with  jiy ,1−  and  jiy ,1+  being the status  in  the adjacent  rows which are combined to 
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produce the row covariate;  jiy ,1−  and  1, +jiy  the status  of plants in  adjacent  columns 

producing the column covariate; 1λ  and 2λ  are the respective parameters measuring the 

effect  of  such  spatial  covariates.  The  separation  of  row  and  column  effects 

accommodates  the fact  the spacing are typically  different  within and between rows, 

allowing to study directional effects.

A naïve method to obtain parameter estimates for  },{ 21 λλλ =  is based on the 

maximization of the pseudo-likelihood (Besag 1975) 

∏ ∏=
i j

ij ypfyL ),()/(~ λ ,                                              (2)

where  )(⋅f  is  the  density  of  the  Bernoulli  probability  distribution.  This  estimation 

method  provides  consistent  parameter  point  estimates,  however  underestimates  the 

associated  standard  errors  and  therefore  inferences  on  model  parameters  can  be 

misleading.  Intuitively  this  caused  by  the  reuse  of  data,  given  the  fact  that  an 

observation is used as a response variable as well as being used to build the covariates 

in the model.

One possible workaround is  to use  resampling methods. However  within the 

context of spatial  patterns this is not straightforward given the need to preserve the 

spatial structure. This can be achieved by block resampling (Cressie 1993) for instance 

using a Gibbs sampler (Gumpertz et al. 1997). The basic idea is to sample from the 

distribution of each observation ijy  conditioning on the current status of the neighbors, 

with probabilities given by the autologistic model (1). This is a sequential algorithm that 

goes as follows. We start with observed values  )0(y  from which we obtain parameter 

estimates  )0(λ  by  maximizing  of  the  pseudo-likelihood  (2).  Next  we  generate  B 
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bootstrap samples ),...,( )()1( Byy  obtaining estimates )ˆ,...,ˆ( )()1( Bλλ  for each of them. The 

bootstrap samples are obtained through the following steps:

1. starting from an arbitrary location (tree) update its status by sampling from 

the Bernoulli  distribution  ),ˆ( )()0( tyf λ  with probability given by the fitted 

model parameters and current status of the plants, in a random sequence until 

the cycle is complete, i.e. the status of all the trees are updated generating a 

bootstrap sample with artificial data )(ty .

2. when  a  cycle  is  completed,  obtain  parameter  estimates  by  maximizing 

pseudolikelihood function (2), 

3. repeat steps 1 and 2 until  the required number  B of bootstrap samples is 

obtained. 

The simulation algorithm ensures the chain of the parameter estimates converges 

to the correct distribution and therefore, the variance of the estimator  λ̂  is then given 

simply by the variance of the estimates )ˆ,...,ˆ( )()1( Bλλ . It is also advisable to disregard a 

certain number m of initial resamples, the so called burn-in period when the chain may 

not  yet  converged,  and also trimming the simulations  taking one at  each  k steps to 

reduce the number of stored simulations. These procedures were implemented as part of 

the present work in a freely available and open source add-on package Rcitrus (Krainski 

&  Ribeiro  Jr.  2007)  to  the  R statistical  environment  for  statistical  analysis  (R 

Development Core Team 2007). 

Models

The data considered here were collected on a citrus grove with presence of CSD, 

in the municipality of Comendador Gomes, Minas Gerais State, Brazil. The trees were 
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arranged in 20 rows of 48 plants with spacing of 7,5 meters between rows and 4 meters 

within rows. Data were collected at 11 time points between 05/11/2001 and 07/10/2002. 

The incidence ranged from 14,90% at the first visit to 45,73% on the final date. The 

response variable used here is the presence/absence of CSD on each tree.

Three candidate models were considered for the analysis. The first model (m1) 

consider as spatial covariates the neighbouring observations within and between rows, 

at the measured at the same time as the response variable and is defined as follows:

)()()(logit 1,1,2,1,110
t

ji
t

ji
t

ji
t

ji
t
ij yyyyp +−+− ++++= λλβ

Model m2, considers the same neighbourhood, however with data reflecting the 

status of the plants at the previous observation time: 

)()()(logit 1
1,

1
1,2

1
,1

1
,110

−
+

−
−

−
+

−
− ++++= t

ji
t

ji
t

ji
t

ji
t
ij yyyyp λλβ

Finally,  model  m3 combines  the two previous models  considering covariates 

built with contemporary and previous status of the neighbours:

)()()()()(logit 1,1,4,1,13
1

1,
1

1,2
1
,1

1
,110

t
ji

t
ji

t
ji

t
ji

t
ji

t
ji

t
ji

t
ji

t
ij yyyyyyyyp +−+−

−
+

−
−

−
+

−
− ++++++++= λλλλβ

The  significance  tests  for  the  regression  parameters  are  based  on  the  usual 

approximation for generalized linear models assuming that  )1,0(~)ˆ(ˆ NVar λλ . For 

m1, the significance test for the coefficients allows for detecting the relevance of the 

spatial effect as well as testing for effects of the status of close neighbours given by the 

within row covariate, and more distant neighbours given by the between rows covariate. 

Model m2 assess the predictive ability of the model through the lagged information built 

in the covariate allowing to inspect the conjecture the present status of the trees would 

allow to predict the probability of trees become infected at the next observation time. 

The different covariate effects assess patterns in the spread of the disease. A last model 
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m3, combines lagged and contemporary covariates in this order, attempting to check 

whether the latter further the model fit accounting for infection factors not captured by 

the lagged covariate.

The three models considered here suggest different mechanisms to explain the 

spread of the disease and therefore the model selection is itself a goal in the study. The 

Akaike  Information  Criteria  (AIC)  provides  a  measure  used  to  assess  and  compare 

model fits and is given by the penalization of the log-likelihood by model complexity 

and is given by pyL 2)),ˆ(~log(*2 +λ , where p is the number of parameters included in 

the model. Another measure widely used is the BIC (Bayesian Information Criteria), 

which increases the penalty function as the sample size increases. In both case smaller 

values indicates a better fitted model. These measured can be used to guide the model 

selection, however, being a criteria and therefore arbitrarily defined, they should not 

replace the interpretation  and contextual  information,  specially  when the differences 

between the models are small, specially in the particular case of these spatial models 

where the likelihood is just an approximation.  

RESULTS AND DISCUSSION

The  models  presented  in  Section  2  were  fitted  to  the  data.  Table  1  shows 

significant effects only for the covariate number of neighbours within row for models 

m1 e  m2 and the spatial  covariate  was  not  significant  for the first  and second data 

collections. Overall similar results were found for model m2.

Table 1 – Incidence, parameter estimates and p-values for models m1, m2 and m3.

Model m1 Model m2 Model m3
Previous time Present time
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Evaluation Incidence 1̂λ p-value 1̂λ p-value 1̂λ p-value 2λ̂ p-value

1 0.15 0.327 0.133

2 0.17 0.389 0.071 0.366 0.017 -0.034 0.435 0.417 0.046

3 0.22 0.643 0.001 0.482 0.002 -0.506 0.004 1.027 0.000

4 0.24 0.708 0.000 0.653 0.000 -0.239 0.060 0.916 0.000

5 0.26 0.611 0.000 0.618 0.000 0.244 0.024 0.390 0.016

6 0.28 0.656 0.000 0.617 0.000 -0.245 0.031 0.887 0.000

7 0.32 0.628 0.000 0.606 0.000 0.097 0.196 0.544 0.001

8 0.33 0.642 0.000 0.632 0.000 0.070 0.259 0.573 0.000

9 0.34 0.616 0.000 0.623 0.000 0.472 0.000 0.154 0.167

10 0.36 0.474 0.001 0.505 0.000 0.444 0.000 0.064 0.334

11 0.46 0.542 0.000 0.436 0.000 -0.120 0.118 0.637 0.000

Model  m3 includes  two  spatial  covariates:  S1 is  number  of  within  rows 

neighbours at present time and S2 is number at previous time. Estimated coefficients and 

p-values  are  also  shown  in  Table  1.  Some  combinations  of  relevant  results  are  as 

follows. Both spatial covariates are significant at 5% significance level for times 3, 5 e 

6; for times 2, 4, 7, 8 e 11, just  S1 was significant; and only S2 for times 9 e 10. It is 

important to notice a potential (nearly) collinearity effect since the values of the two 

covariates can be similar, specially when the incidence is nearly the same between two 

consecutive observations in time.

Table 2 shows the Akaike Information Criteria (AIC), which is used to assess 

the fitted models. This criteria points that model m1 is the preferable one for most of the 

observation periods (2,4,5,6,7,8 e 11), Model m3 is better supported for time 3 and m2 

for times 9 and 10. Similar results were returned by the BIC criteria.

Table 2 – AIC values for the tree fitted models

Evaluation Model m1 Model m2 Model m3
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2 725.55 726.76 727.54

3 813.25 824.66 812.33

4 851.58 858.66 853.08

5 908.32 909.09 909.81

6 932.52 936.61 934.17

7 992.94 997.26 994.80

8 1003.70 1004.79 1005.68

9 1019.30 1018.58 1020.50

10 1067.11 1064.87 1066.82

11 1009.49 1121.87 1111.08

The major advantage of having an explicit model is the possibility of quantifying 

the probability of disease in a particular tree given the status of the neighboring plants. 

In the current study the spatial covariates counts the number of infected neighboring 

trees and therefore assume values 0, 1 or 2. The coefficient associated with the spatial 

covariate allows for computing the increment in the odds of a plant having the disease 

as the number of infected neighbours increases. The three models considered status of 

within  and  between  rows  however,  overall,  fitted  models  here  indicates  only  the 

knowledge of the status of the within rows neighbours is relevant. This shows evidence 

the spatial pattern is present and conditioning only on close neighbours is enough for 

describing  it.  In  what  follows  we  provide  examples  on  how  the  results  can  be 

interpreted.

The estimated coefficients for model m2 are -1.773 and 0.366. The value 

366.0e  is the increment in the odds of having the disease of a plant with k compared with 

another  one  with  k-1 infected  neighbours  or,  in  other  words,  the  increment  of  one 

infects neighbour increases the probability of the disease by a factor of 1.442. Consider 

now under this model we aim to compute the probability of a tree to became diseased at 
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a particular time, given the data collected at the previous time. For the third evaluation, 

the probability of a tree become infected is 0.145, 0.197 and 0.261 for zero, one or two 

infected neighbours, respectively. For the subsequent time the coefficients are -1.557 

and 0.482 and these probabilities are now 0.174, 0.254 and 0.356 showing a increase of 

the odds from one to another time interval. Similar results can be computed for other 

time points and models given the fitted coefficients. 

Figure 1 summarizes the computed probabilities from the second (2001-12-05) 

to  the  eleventh  (2002-10-07)  data  collection  time.  The  lines  with  different  patterns 

provide the profiles of such probabilities  for plants with zero,  one and two infected 

neighbours  and  the  corresponding  shaded  lines  are  the  confidence  intervals.  The 

consistent message it that the probability rises with the increase of the incidence, reflect 

by the  intercept  coefficient,  in  association with the  spatial  pattern  given the by the 

coefficient  associated with the covariate.  From the third observation,  the confidence 

intervals do not overlap, indicating that the infective pressure is greater for two than 

one, and one than zero, infected neighbours. 

Figure 1 – Evolution of the probability of a plant become diseased over evaluations with 

corresponding confidence intervals. 
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CONCLUSIONS

Autologistic  models  provides  a  tool  to  further  explore  and  describe  spatial 

patterns  of  plant  diseases  beyond  methods  currently  adopted,  allowing  to  better 

understand  mechanisms  of  the  spread  of  the  disease,  not  only  by  detecting  spatial 

patterns but also quantifying through the associated coefficients the effects of presence 

of  disease  in  different  neighbourhood  structures.  An  important  feature  of  the 

autologistic model applied to individual trees is the objectivity when analysing original 

data, without the need of some sort of arbitrary discretizations, as for instance needed 

by methods based in quadrats. 

The results found here for CDS points to the presence of spatial patterns in the 

disease for which evidence becomes clearly as the incidence rises. In general, there is 

evidence of aggregation for levels of incidences higher than 20%. From the third data 

collection time onwards there was a noticeable increase of the probability of a plant 

become diseased in the presence of infected neighbours as given for instance by. Model 

fit for  m2 shows evidence of infective pressure. Notice however the detection can be 

influenced by the time interval between observations. Overall the within row effect is 
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stronger, reflecting the spacing adopted in the field and supporting the conjecture of 

spatial pattern, i.e. the closer the plants the higher the infective pressure.

Our conclusion at this stage is that the autologistic model has a potential do be 

widely adopted to investigate spatial patterns. It requires an extra computational burden 

compared with usual generalized linear models, which we have overcame with our own 

and freely available computational implementation. Further attempts to explore more 

flexible and general descriptions of the spatial patterns, ways to combine a sequence of 

time observations are steps to be followed in our investigation. Also the methodology 

suggests  a  way  to  objectively  combine  data  from  different  fields,  allowing  for 

investigation of effects of choices of spacing between trees, age, type of citrus, seasonal 

effects, tree combinations and other properties that can vary between different fields.
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