ISBA Bulletin, March 2001

SOFTWARE

SOME WORDS ON
THE R PROJECT

by Paulo J. Ribeiro Jr. and
Patrick. E. Brown
paulojus@est.ufpr.br
p.brown@lancaster.ac.uk

O Introduction

The choice of statistical
computing environment is a
recurring issue and is often a
source of conflicting views. The
decision of which programme(s)
to adopt involves discussion of
the needs of teaching,
consultancy and/or research,
and whether the software is for
private use or for adoption at
the workplace. The process can
involve the intermingling of
philosophies of software choice
with constraints imposed by
availability and finances. There
is some consensus that
availability of mathematical and
statistical tools should be
combined with an environment
for implementation of new
methods. Writing from the
econometrics perspective
Cribari-Neto and Zarkos (1999)
point out that “computer work
was mainly a question of
reading the manuals and
identifying which of the
pre-packaged routines would
perform the desired task. Times
have changed, however, and
many newly developed
techniques are not available in
econometrics packages”. Their
comments certainly apply to
other areas which demand
specific techniques or
adaptations of the existing ones.
From the statistician’s
perspective there will always be
the need for a flexible
environment to implement new

methods and make them
available to a wider audience.

In this article we describe the
R Project and explain the main
reasons why we adopted R as
our preferred statistical
computing environment. These
are comments from the user’s
perspective, and we are not R
specialists with in-depth
knowledge about the inner
workings of the system. Patrick
has been using R since
December 1999, judging by the
date of his oldest .RData file, for
both interactive use and
computationally intensive batch
jobs for his duties as a research
associate. Paulo has been using
R since January 2000
developing a package for
geostatistical analysis as part of
his PhD work and has run short
courses with practical sessions
using the package. The text is
therefore biased towards R’s
suitability for our specific
research activities in an
academic environment. It also
reflects our status as
computer-literate career
statisticians who use the
package on a daily basis.

The question we first asked
ourselves when writing this
article was: why do we use R ?
The short answer was: it’s a
good quality statistics package
that includes a slew of
traditional and modern
statistical methods. It’s
available for a number of
operating systems, it’s easy to
create functions and packages
for teaching and research, and
the graphics are superb. It
interfaces well to lower-level
languages such as C, C++ and
FORTRAN, and ... it’s open
source and free!

O Platforms

One of the original
motivations for the
development of R was to
provide multi-purpose
statistical software for the Linux
operating system, and R was
probably the first package to
achieve this. Linux, because it is
free and open source, has
gained popularity not only
amongst Unix users, but as an
alternative to Windows. As
Linux has evolved it has become
easier to install and use, and
there are currently a number of
user-friendly interfaces that
come bundled with most Linux
distributions. As a consequence
the numbers of universities,
companies, and private users
adopting Linux is increasing.

R is well suited to Linux.
Many Linux distributions
(Mandrake 7.2 for instance)
come bundled withR (and
Matlab’s clone: Octave), as well
as with many tools that R can
exploit. R is also available for
many Windows releases,
Macintosh, and Solaris. Since
the source code is distributed, R
can be compiled to run with any
platform. (Patrick is waiting for
a PalmOS version!)

R is accessed solely via a
command-line interface, even
with the Windows version. This
is because, as a non-commercial
project, developers had other
priorities. Besides, the debate
about whether menu-driven
interfaces cause more harm than
good is still raging. Seasoned
programmers will appreciate R’s
terse interface, as it lends itself
to speed and flexibility, but
users of Excel and others menu
driven software may find the



solitary “>” prompt
intimidating. There is an
attempt to develop a GNOME
interface but this is still in its
early stages. For Emacs users,
the functionality of ESS (Emacs
Speaks Statistics) includes
support for R.

0 So, what is R?

Quoting the R
documentation: “R is a
computer language not entirely
unlike the S language
developed at AT&T Bell
Laboratories by Rick Becker,
John Chambers and Allan
Wilks. The two languages are
implemented quite differently,
but bear enough superficial
resemblance that users should
be able to switch between the
two with relative ease.” R can
be regarded as a
re-implementation of the S
language. Motivations for its
development include an
attempt at a more efficient
implementation of the S
language, specially concerning
memory demands, and
development for platforms not
supported by S-PLUS (at least at
that time) like Linux and
Macintoch. R was first
announced on the S-News in
August, 1993. Published
reference about the project goes
back to Ihaka and Gentleman
(1996) reporting the initial
development at the Statistics
Department of the University of
Auckland. Since 1995R has
been distributed as a free
software with beta versions
available and constantly
updated. The first non-beta
version (R-1.0) was released on
29" February, 2000. The version
1.2 introduced significant
changes in the memory
management. The main

consequence is the workspace is
no longer static, it can grow and
shrink as needed, freeing the
user of the obligation to
anticipate and allocate
necessary memory for each
session. The current version is
R-1.2.1 available at CRAN
(Comprehensive R Archive
Network).

R consists of two basic parts:
R-base, with the main code, and
the contributed packages, a
collection of codes
implementing a diversity of
statistical methods. InR’s
terminology the word package is
used instead of S-PLUS’s
library. R development and
policy are coordinated by the R
core team, currently consisting of
Douglas Bates, John Chambers,
Peter Dalgaard, Robert
Gentleman, Kurt Hornik, Ross
Thaka, Friedrich Leisch, Thomas
Lumley, Martin Maechler,
Guido Masarotto, Paul Murrell,
Brian Ripley, Duncan Temple
Lang, Luke Tierney. The core
team was established in
mid-1997 and plays the central
role in R development and
distribution, including
responsibility for changes in the
basic code. The project as a
whole has contributions from a
much larger group of people.
The names of the main
contributors are listed by typing
contributors() at theR
prompt.

For those of you unfamiliar
with both, R and S-PLUS are
packages which provide
facilities for data manipulation,
calculation and graphical
display. These include
collections of tools for data
analysis and a simple
programming language which
can be used to implement new
methods of data analysis

and/or to customise existing
ones. A key distinction from
other statistical software is the
emphasis on doing analyses in
steps, storing results in objects
which can be processed and
interrogated by other functions.
R is a run-time environment,
meaning that code is not
compiled into executables the
way C code, for instance, is. A
short example of R code is:

xyregression <- lm(y ~ x)
qqnorm(xyregression$resid)
printgraph(file="qqnorm.ps")

The first command performs
a linear regression on the data in
vectors x and y, saving the
results as an object called
“xyregression”; the second plots
the normal scores of the
residuals in a graphics window
and the third saves the graph as
a postscript file.

O R and S-PLUS: are they
different?

The most obvious difference
betweenR and S-PLUS is thatR
is an open-source project which
distributes its source code under
the terms of the GNU public
license. The first advantage of
open-source software is that it is
free, freeing up a department’s
software license budget to fund
more conferences overseas for
postgrads and researchers! In
fact, free software might be the
only viable alternative for
several departments around the
world which cannot afford
annual licenses for good quality
statistical software.

On a scientific note, open
source software allows the user
to inspect and study the source
code, so we'll always know
exactly which eigenvalue
algorithm is used to compute
our principle component
analyses. Furthermore, the



source code can be modified
and re-distributed, or compiled
as a stand-alone executable,
provided the new code is also
made publicly available.

The primary differences
between the two packages are
not on the surface, but on how
the programmes function
internally. Although to a user
the programmes are almost
identical, the bones of the
packages are quite different.
The root of the difference is that
R uses what clever people call
lexical scoping. This feature is
inherited from the Scheme
programming language from
which R developers have
borrowed many ideas. S-PLUS
only uses local and global
variables, whereas R has a
hierarchy of variables whereby
a function defined within a
function can see variables
defined in the first function.
One result of the differing
implementations is that R
manages its own memory,
allowing loops to operate more
quickly than S-PLUS, reducing
the critical problem of
exploding memory usage.
Ripley (2001) point out that: “R
is more tolerant of
badly-written code which can
make S-PLUS slow to crawl”.
We both have had programmes
that use too much memory to be
run in S-PLUS but run without
problemsinR ...

For the average user the two
packages appear almost
identical. Changing the motif ()
command to X11() is sufficient
to run most simple S-PLUS code
inR. One important difference
is that while S-PLUS saves each
object as a separate file, R saves
the entire workspace as one file,
the way Matlab does.
Transferring data between R

and S-PLUS is usually
straightforward with the dump
and restore commands. There
is no analogue of S-PLUS’s
Trellison R. On the other hand
R’s plots accept mathematical
notation and have more
versatile colors schemes, at least
when using the command line
under Linux. Yet another
difference is the extra flexibility
in algorithms for random
number generation: there are
more algorithms available in R
(and being open source they can
be re-implemented in other
engines). Other differences are
listed in R's FAQ and Venables
and Ripley’s (1999) on-line
complements. We will leave
them to the reader.
Compatibility with S has been
pursued but sometimes has to
be sacrificed in attempts to
repair short-comings of S.

We particularly like the tools
to create packages available to
the R programmer.
Documentation can be written
using a, I&TEX style,
pre-formated type of document.
A host of perl scripts assemble
the code, check the example
functions, build and convert
documentation to a number of
formats (pdf and HTML, among
others). Scripts are available to
convert to and from S-PLUS
formats. Quite often we find
packages originally written for
one of the engines and
converted to the other. Building
a package like geoR say, under
Linux, is done by: writing
functions and documentation,
copying them and other source
code to a directory geoR with a
specific structure, writing a
short DESCRIPTION file and
typing the shell command

R CMD build geoR.

The resulting file can be
distributed and installed by
typing;:

R INSTALL
geoR _version.number.tar.gz.

For packages available at
CRAN the installation and
update is even easier. It can be
done online during an R session
using the functions
install.packages () and
update.packages().

0 Teaching

R isideal for teaching for a
number of reasons. Since it is
accessed by programming
rather than menus, students can
perform linear regression by

typing:
betahat <- solve(t(x) %*}% x)
W4 t(x) Wy

and can be stimulated to write
their own code, as well as to
inspect the ones already
available.

Being free, R can be
distributed and installed on
personal computers. Class
examples can be reproduced at
home regardless of which
engine is used at the University
Labs. Packages can be easily
prepared providing excellent
and well organized material for
courses. Actually, much of the
available resources in R comes
from teaching material. A very
nice example of teaching
introductory courses using R is
given by Nolan and Speed
(2000). An experience with a
web-based interface is described
by M.]. Ray in the first issue of
the R News. The article describes
an implementation of a Rcgi
interface at the University of
East Anglia. Analyses can be
performed remotely. Input is
passed from a web-browser to



the program running on a
server and output is passed
back again to the web-browser.

U Integration

As programming tools R and
S are easier to learn and quicker
to program though not as
efficient as languages like C,
C++ or Fortran. However, one
of the virtues of both is the
possibility of integration with
other codes. Shared libraries can
be loaded, opening the
possibility of using R and
S-PLUS for graphical interface
even if the number-crunching
uses a lower-level languages.

Other kinds of integration
and interfaces have been
discussed and implemented in
R. Some examples are
alternatives to distributed
computing, interfaces with
database management systems
and communications with other
languages/applications.
Probably, these are areas where
we will see most of the further
developments. We refer to the
first issue of the R-News

cran.r-project.org/doc/Rnews/

for more information on specific
projects.

U Bayesian methods in R

Although the current
distribution does not include
many Bayesian tools, other
available resources, including
integration with other
languages, make R a suitable
environment for implementing
Bayesian methods. The package
CODA (output analysis and
diagnostics for MCMC) by
Martyn Plummer, Nicky Best,
Kate Cowles and Karen Vines,
included as a contributed
package in CRAN, is an
excellent tool for Bayesians

needing to convince referees
that their chains have indeed
converged. Paulo has
implemented some Bayesian
methods for spatial data in the
geoR package. There are
certainly more Bayesian
packages available that we will
be chastised for not mentioning.

There have been messages on
the topic of Bayesian methods
on R’s help list and it is clear
that there is space for further
development, either in the form
of additional R packages or by
integrating R with existing
Bayesian software. Hopefully in
the future there will be more
resources at CRAN
implementing Bayesian
methods.

0 Documentation and Support
The official R’s web sites are:

WWww.r-project.org
cran.r-project.org

The first is “the” R home
page while the second works as
a download area with several
mirrors. Extensive and detailed
documentation can be found at
the sites, and are also included
in the software distributions.
Some examples of available
documents are ¢ ‘An
Introduction to R’’ and
‘‘Writing R Extensions’’.
Specific documentation for the
packages can be found at the
contributed packages
web-page. Many basic
questions are answered in R’s
FAQ. Functions are documented
and help on specific functions
are obtained by typing

help(function.name).

The function help.start ()
allows visualisation in HTML
format. The only support
available is through the R help

list and we can only report
positively from our experience
subscribing to it.

O How to start?

The best way to start is to be
motivated by an ongoing
project. It’s worth looking at the
demos available by typing at the
command line

demo ()

and then selecting one of the
available options. Try
demo (graphics), for example.
Users not familiar with S-PLUS
can start running the examples
listed in the Appendix A of ¢ ‘An
Introduction to R’’. This will
give a good idea of the R
environment and the basic
resources available, before start
reading more detailed material.
Given the similarities with
S-PLUS, most of the literature
can be shared. For example the
“classic” books by Becker,
Chambers and Wilks (1998) and
Chambers and Hastie (1988) can
be adapted for R. Venables and
Ripley (1999) has online
complements on R and
Venables and Ripley (2000) is
written such that R’s specific
features are highlighted.

O References

BECKER, R.A., CHAMBERS,
J.M. and WiLKks, A.R. (1988)
The New S Language. Chapman
& Hall.

CHAMBERS, ].M. and HASTIE,
T.J. (1992) Statistical Models in S.
Chapman & Hall.

CRIBARI-NETO, F. and ZARKOS,
S.G. (1999) R: yet another
econometric programming
environment. Journal of Applied
Econometrics, 14, 319-329.

THAKA, R. and GENTLEMAN, R.
(1996) R: a language for data



analysis and graphics. Journal of
Computational and Graphical
Statistics, 5, 299-315.

NOLAN, D. and SPEED, T.D.
(2000) Stats Labs: Mathematical
Statistics Through Application.

Springer.

RIPLEY, B.D. (2001) The R
project in statistical computing.
LTSN Math, Stats & OR Network
Newsletter No 5 (March).

VENABLES, W.N. and RIPLEY,

B.D. (1999) Modern Applied
Statistics with S-PLUS. 3" ed.
Springer.

VENABLES, W.N. and RIPLEY,
B.D. (2000) S Programming.
Springer.



