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S

A Poisson-gamma model is introduced to account for between-subjects heterogeneity
and within-subjects serial correlation occurring in longitudinal count data. The model
extends the usual time-constant shared frailty approach to allow time-varying serially
correlated gamma frailty whilst retaining standard marginal assumptions. A composite
likelihood approach to estimation and testing for serial correlation is proposed. The work
is motivated by a clinical trial on patient-controlled analgesia where the number of anal-
gesic doses taken by hospital patients in successive time intervals following abdominal
surgery is recorded.

Some key words: Composite likelihood; Multivariate gamma distribution; Patient-controlled analgesia;
Recurrent event data.

1. I

We consider longitudinal count data, with N
ij

events observed in interval j
( j=1, . . . , p) for subject i (i=1, . . . , s). An example to be considered in § 5 concerns the
number of analgesic doses taken by hospital patients in 12 successive four-hour intervals
following abdominal surgery. Other examples include monthly cases of rare diseases
(Zeger, 1988; Hay & Pettitt, 2001), epileptic seizures (Thall & Vail, 1990) and daily
mortality numbers (Kelsall et al., 1999).

Parameter-driven models (Hay & Pettitt, 2001) for data of this type are usually based
on a foundational assumption of Poisson regression with the possibility of a latent process
to generate overdispersion and perhaps serial correlation. Within this general strategy
three broad classes of models can be distinguished. The first class is based on the standard
overdispersion approach for univariate count data, namely Poisson counts mixed by
gamma random effects to give negative binomial marginals. In extending this to longitudi-
nal data a common assumption is that event counts are conditionally independent Poisson
variables given the value Z of a gamma-distributed subject-specific frailty term which
remains constant in time; see Thall (1988), Diggle et al. (1994, Ch. 9) and references cited
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by van Duijn & Böckenholt (1995). This approach allows for both extra-Poisson hetero-
geneity between individuals and within-subject association between intervals. A dis-
advantage is that with time-constant Z the association in event counts cannot depend on
time-separation between the intervals. The second class induces both overdispersion and
serial correlation through a multiplicative latent process, Z

j
=exp (W

j
) for period j, where

W1 , W2 , . . . form a Gaussian time series (Chan & Ledolter, 1995; Hay & Pettitt, 2001).
Efficient estimation is possible but requires computationally intensive methods and closed-
form expressions do not exist for the marginal distributions or moments. The third
approach is based on generalised estimating equations, specifying first- and second-order
moments and estimating from the appropriate sample statistics (Zeger, 1988; Kelsall et al.,
1999; Jowaheer & Sutradhar, 2002). This is robust but can be inefficient.

In this work we aim to combine the advantages of the first and second modelling
approaches by specifying a time-varying frailty model which satisfies the following
criteria: gamma frailty Z

ij
for interval j and subject i, with mean one and variance j,

written Ga (1/j, 1/j); conditionally independent Poisson N
ij

given Z
ij
; and within-subject

correlation corr (Z
ij
, Z
ik
)=r|j−k| (0∏r∏1).

The first two of these criteria maintain the proven advantages of Poisson-gamma frailty
models, principally flexibility and the availability of a closed, negative binomial, form for
the marginal distribution of the event counts. The third subsumes the standard shared
frailty approach into a potentially more realistic correlation structure. Additional advan-
tages of our approach are improved efficiency in comparison with estimating equation
methods, availability of closed-form expressions for covariances and other moments, and
estimation using a standard Newton–Raphson technique rather than the  algorithm,
Markov chain Monte Carlo or other computationally intensive methods.

The proposed correlated gamma frailty model is described in § 2. A composite likelihood
estimation procedure based on pairwise contributions is developed in §§ 3 and 4. The
application to patient-controlled analgesia data is described in § 5, and some brief remarks
in § 6 complete the paper.

2. C   

We suppose that each subject is observed over a common observation period which is
partitioned into p intervals of equal length. This assumption simplifies the presentation
but is not necessary. For the moment we consider just a single subject and drop the
subscript i. Thus N1 , . . . , Np are the event counts and Z1 , . . . , Zp are the corresponding
frailties. Fixed covariates are denoted by x and are assumed to be time-constant, though
again this is not a necessary assumption. We assume that the event counts are conditionally
independent Poisson variables with

N
j
|Z
j
~Po{Z

j
exp (a

j
+bx)},

where a
j
determines the interval-specific baseline rate.

To derive a multivariate gamma distribution with the required properties we begin by
recalling a standard result. Suppose Y1 , . . . , Yq are independent p-variate Gaussian with
standard marginals and common p×p correlation matrix C.Write Y

j
= (Y
j1
, . . . , Y

jp
)∞ and

let Z
k
=Wq
j=1
Y 2
jk
/q, for k=1, . . . , p. Then the standard result is that Z= (Z1 , . . . , Zp )∞ is

multivariate gamma with marginal Ga (q/2, q/2) distributions and Laplace transform

E{exp (−u∞Z)}=|I+2C diag (u)/q |−q/2, (1)
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where u= (u1 , . . . , up )∞ (Krishnamoorthy & Parthasarathy, 1951). Moreover, by differen-
tiation it is straightforward to show that the correlation matrix for Z is a matrix R of
elementwise squares of C, that is R

jk
=C2
jk
.

As given, the distribution requires positive integer q and hence is of limited use. The
question as to whether or not (1) defines a proper distribution for non-integer q has had
some attention (Krishnaiah & Rao, 1961; Moran & Vere-Jones, 1969; Griffiths, 1970) with
Griffiths (1984) showing that under certain conditions (1) does indeed define a valid
distribution for any q>0. Equivalent conditions that are more simply evaluated are given
by Bapat (1989): provided the off-diagonal elements of (MCM)−1 are nonpositive for
some diagonal matrix M with diagonal elements 1 or −1 such that all entries in MCM
are nonnegative, the form (1) defines a Laplace transform of an infinitely divisible
distribution.

Now suppose that C has elements C
jk
=r|j−k|/2 for 0∏r∏1. ForM=I, (MCM)−1 has

nonpositive off-diagonal elements, the Bapat condition is satisfied and (1) defines a proper
multivariate gamma distribution. Letting j=2/q we thus have the following definition of
a multivariate gamma distribution with the required marginal and correlation properties.

D. W ith C
jk
=r|j−k|/2=R1/2

jk
(0∏r∏1), the p-vector Z with L aplace

transform

L(u)=E{exp (−u∞Z)}=|I+jC diag (u) |−1/j (2)

has a proper multivariate gamma distribution, with Ga (1/j, 1/j) marginal distributions and
correlation matrix R, for all j>0.

This definition applies also for other correlation structures, including compound
symmetry C

jk
=r1/2 and any Markovian-type correlation matrix such that C

ik
=C
ij
C
jk

(i∏ j∏k).
Although there is no known closed form for the density of Z, inference will be based

on the marginal distribution of the count data after integrating out the frailty terms, and
in effect on the properties of the Laplace transform of Z, which we have seen to have a
very simple form. For instance, if we write u

j
=exp (a

j
+bx) and if Z has the multivariate

gamma distribution defined at (2) then the count data N1 , . . . , Np have the following
moments: E(N

j
)=u
j
, var (N

j
)=ju2

j
+u
j
and cov (N

j
, N
k
)=r|j−k|ju

j
u
k
.

The marginal distributions are negative binomial, i.e.

pr (N
j
=n
j
)=

un
jj

n
j
!(1+ju

j
)n
j
+1/j

a
n
j
−1

k=0
(1+kj),

and the joint distribution can be obtained in principle by differentiation of the Laplace
transform at (2):

pr (N
1
=n
1
, . . . , N

p
=n
p
)=Aap

j=1

un
jj
n
j
!B×E{Zn11 . . . Znpp exp (−u∞Z)}

= (−1)∑n
j Aap
j=1

un
jj
n
j
!B ∂(n1+...+np)L(u)∂n

1
u
1
. . . ∂n

p
u
p
. (3)

In practice however the number of terms involved in the derivatives quickly becomes
unmanageable for realistic problems.
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3. B 

We consider the special case of two intervals as a prelude to the composite likelihood
technique to be described in § 4. We consider intervals 1 and 2, with counts N1 and N2 ,
frailties Z1 and Z2 and frailty correlation corr (Z1 , Z2 )=r. Results apply equally to any
intervals j and k provided r is replaced with r|j−k|.

We write the bivariate Laplace transform (2) as

L(u)= K1+ju1 r1/2ju2r1/2ju
1
1+ju

2
K−1/j=D−1/j

say, where D=1+ju
1
+ju

2
+j2u

1
u
2
(1−r). If we use (3) and induction, the joint

distribution of the event counts N1 and N2 can be shown to be

pr (N
1
=n
1
, N
2
=n
2
)=
un
11
un
22

n
1
!n
2
!
∑

min(n
1
,n
2
)

j=0
C(−1)j An1j B An2j B j! q a

n
1
+n
2
−j−1

k=0
(1/j+k)r

×D−(1/j+n
1
+n
2
−j) A∂D∂u

1
Bn1−j A∂D∂u

2
Bn2−j A ∂2D∂u

1
∂u
2
BjD (4)

with the convention that Xb
a
=1 if b<a. Writing

∂D
∂u
1
=j{1+ju

2
(1−r)}=jD

1
,
∂D
∂u
2
=j{1+ju

1
(1−r)}=jD

2
,
∂2D
∂u
1
∂u
2
=j2(1−r),

settingm1=min(n1 , n2), m2=max(n1 , n2) and defining f=D(1−r)/D1D2 ,we can rearrange
(4) as

pr (N
1
=n
1
, N
2
=n
2
)=
un
11
un
22

n
1
!n
2
! q am2−1
k=0
(1+kj)r D−1/j AD1D Bn1 AD2D Bn2

× ∑
m
1

j=0
C(−1)j Am1j B Am2j B j! q a

m
1
+m
2
−j−1

k=m
2

(1+kj)r jj f jD . (5)

At r=1 the model is equivalent to the shared frailty model and (5) reduces to

pr (N
1
=n
1
, N
2
=n
2
)=
un
11
un
22

n
1
!n
2
! q an1+n2−1
k=0

(1+kj)r {1+j(u1+u2 )}−(j−1+n1+n2).
At r=0 the frailty terms are independent between intervals and the probability becomes

pr (N
1
=n
1
, N
2
=n
2
)=
un
11
un
22

n
1
!n
2
! q an1−1
k=0
(1+kj)r q an2−1

k=0
(1+kj)r

× (1+ju
1
)−(j−1+n

1
)(1+ju

2
)−(j−1+n

2
). (6)

4. C  

4·1. Parameter estimation

Now reintroduce the subscript i (i=1, . . . , s) to index subjects and let h= ({a
j
}, b, j, r)∞

be the combined vector of unknown parameters. Full likelihood analysis requires the joint
probabilities pr (N

i1
=n
i1
, . . . , N

ip
=n
ip
), which we have seen to be intractable. As an

alternative we propose a consistent composite likelihood procedure (Lindsay, 1988) based
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on all pairwise comparisons of intervals. Let

l
i
(h )= ∑

p−1

j=1
∑
p

k=j+1

1

p−1
log pr (N

ij
=n
ij
, N
ik
=n
ik
)= ∑
p−1

j=1
∑
p

k=j+1

l
ijk
(h )

p−1

be the composite loglikelihood contribution for subject i, obtained using the results of § 3.
Here the divisor ( p−1) is included so that in the independence case, r=0, the composite
likelihood is equivalent to the standard full likelihood. The combined com-
posite loglikelihood is then

l(h )= ∑
s

i=1
l
i
(h ).

As each term l
ijk

is a proper loglikelihood based on counts in intervals j and k, the
composite score ∂l/∂h provides an unbiased estimating equation and standard asymptotic
results apply for the maximum composite likelihood estimator h@ . In particular, as s�2,
√s(h@−h0 ) converges in distribution under regularity conditions (Godambe & Heyde,
1987) to N(0, V ), where h0 is the true parameter vector, V=V −1

1
V
0
V −1
1

with

V
1
= lim
s�2

1

s
∑
i

∂2l
i

∂h ∂h∞
, V
0
= lim
s�2

1

s
∑
s
E qA∂li∂hB A∂li∂hB∞r

and the derivatives are evaluated at h0 . The components V0 and V1 , can be estimated from
the composite score and information in the usual way to obtain a robust variance estimator
(Zeger & Brookmeyer, 1986; Liang, 1987). Expressions for the required differentials are
quite involved and are hence omitted, though further details are available from the authors.

A final point about estimation is that care should be taken to avoid rounding error
when counts are high and some of the factorial terms in the composite likelihood are
large. Some robustness can be gained by writing (5) as the product of two terms, one of
which reduces to the likelihood under independence when r=0. Again detail is available
on request. If all counts are high then a Normal approximation is likely to be adequate.

4·2. Numerical results

In this section we summarise simulation work designed to investigate the performance
of the composite likelihood estimator h@ and its associated robust variance estimator.
Additionally we compare with simpler methods using either an independence working
assumption or a generalised estimating equation approach and we give some efficiency
results.

A selection of results are shown in Table 1. For this study we simulated 500 datasets
each of sample size 250, at each combination of j= (0·25, 0·50) and r= (0·5, 0·9). There
were p=12 counts per subject, with baseline exp (a

j
)=4 for each period, one binary

covariate and b=0. The table shows mean composite likelihood parameter estimates
together with standard errors from mean robust variances and empirically observed over
the 500 simulations. In addition there are efficiency estimates for independence working
assumption and generalised estimating equation alternative estimation techniques. The
independence working assumption method assumes the correct negative binomial mar-
ginal distributions but ignores correlation. The generalised estimating equation results are
based on the moments of the N

ij
as in Zeger (1988), and with the exception of r were

obtained using the eponymous R module. This routine estimates extra-Poisson variation
through a scale factor, var (N

ij
)=wE(N

ij
), whereas for the gamma frailty model var (N

ij
)=
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jE(N
ij
)2+E(N

ij
), and hence normally there is no direct comparison with j. However,

when all means are equal, E(N
ij
)=u say, we can set j@=w@−1/u and this explains our

choice of a
1
= . . .=a

12
and b=0. We also obtained a direct estimate of j by equating

the sample mean of N2
ij

to its expectation, essentially following the procedure of Jowaheer
& Sutradhar (2002), and obtained very similar results to those reported in Table 1. Whilst
a working first-order autoregressive correlation structure was assumed under the general-
ised estimating equation method, that is corr(N

ij
, N
ik
)=n|j−k|, the parameter n is not

comparable to the model correlation parameter r given that the true covariance is
cov (N

ij
, N
ik
)=r|j−k|ju

ij
u
ik
. Instead, for illustration we estimated r using a moment esti-

mator based on the sample lagged products. For this, first we estimated separately at each
lag by equating W

i
N
ij
N
ik

to its appropriate expectation from the covariance above, and
then adjusting by using the true values of u

ij
, u
ik

and j to obtain a sample estimate of
r|j−k|. Next we used weighted least squares on the combined log-estimators to derive an
overall estimator of log r and hence r, weighting in inverse proportion to the number of
available observations at each lag. We also estimated r more directly using the lag-one
results only, as suggested by Zeger (1988). These results are not reported as efficiency was
worse than for the first estimator, which made more use of the available data. The table
also omits results for baseline parameters other than a1 and a12 for space reasons.

Table 1. Specimen simulation results, from 500 samples of size
s=250. EYciencies under independence working assumption
() and generalised estimating equation () approaches are
estimated from empirical variances over the simulations. T rue

a1=true a12= log 4=1·386 and true b=0

Standard error Efficiency (%)
j r Mean Robust Empirical  

0·5 0·5 a@1 1·380 0·059 0·061 100 100
a@12 1·387 0·059 0·058 99 99
b@ 0·002 0·045 0·045 98 101
j@ 0·497 0·023 0·022 100 60
r@ 0·496 0·028 0·030 — 5

0·25 0·5 a@1 1·386 0·048 0·047 100 100
a@12 1·386 0·048 0·047 100 99
b@ 0·000 0·035 0·034 100 100
j@ 0·247 0·014 0·014 100 80
r@ 0·491 0·032 0·038 — 6

0·5 0·9 a@1 1·381 0·066 0·064 99 99
a@12 1·379 0·066 0·065 99 100
b@ 0·004 0·074 0·070 97 99
j@ 0·495 0·034 0·033 95 52
r@ 0·899 0·011 0·012 — 2

0·25 0·9 a@1 1·384 0·053 0·054 100 100
a@12 1·380 0·053 0·055 100 101
b@ 0·000 0·055 0·055 99 101
j@ 0·248 0·019 0·020 96 73
r@ 0·900 0·014 0·014 — 1

From these and other simulation results we conclude that the composite likelihood and
robust variance estimators perform well. There is no noticeable bias and the estimated
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variances match the observed values closely. The same is true also for all parameters
estimated under the independence working assumption method, and for the mean para-
meters when using generalised estimating equations, results not shown. The estimating
equation method has poor efficiency however in estimation of the variance parameter j,
with the performance deteriorating as j increases, and extremely poor efficiency in esti-
mation of the correlation parameter, despite the method exploiting known u

ij
, u
ik

and j
in this simulation study. To illustrate this further, Table 2 shows the asymptotic relative
efficiency of generalised estimating equation estimators of j and r in comparison to model-
based likelihood estimation in the bivariate case p=2, with as above baseline count
exp (a

j
)=4 and no covariate effect. These values were obtained using the expected infor-

mation based on (5) and the moments of N2
ij

and N
i1
N
i2

, which can be calculated under
the assumed model. The moment-based estimator of r has very low efficiency and we note
that at this smaller number of counts for each subject the generalised estimating equation
estimator of j also performs poorly.

Table 2. Simulation results. Asymptotic relative eYciency of
estimating equation method relative to likelihood estimation,
with p=2 observations per subject and all E(N

ij
)=4

Efficiency (%)

j=0·25 j=0·50 j=1·00
r=0·5 r=0·9 r=0·5 r=0·9 r=0·5 r=0·9

j@ 11 10 11 11 10 10
r@ 11 6 10 3 8 1

5. A

5·1. Background

Patient-controlled analgesia is a mechanism which allows patients to control their own
pain relief following surgery. On request, a machine infuses a bolus of drug provided that
a sufficient period, the lock-out time, has elapsed since the previous delivery. Table 3 shows
the average number of requests in 12 successive four-hourly intervals following abdominal
surgery for 65 patients in a clinical trial to compare two bolus/lock-out combinations. In
group 1, containing 30 patients, the bolus was 2 mg of morphine and the machine was
locked out for 8 minutes after each delivery. In group 2, of 35 patients, the bolus was
1 mg of morphine with four-minute lock-out. The difference in the lock-out times restricts
the number of requests per interval to at most 30 for patients in group 1 and 60 for those
in group 2. Such a restriction can in principle make comparisons of raw counts misleading
but need not be of concern here as the observed counts are all below the corresponding
upper limits. There is substantial extra-Poisson variation, see Table 3, and evidence of
serial correlation decaying with time; see Fig. 1. Thus a time-varying random effect model
may be appropriate.

5·2. Results

Parameter estimates under three different frailty models and a generalised estimating
equation approach are shown in Table 4, where b denotes the effect of the bolus/lock-out
combination. We fitted the proposed time-varying serially correlated gamma frailty model
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Table 3. Summary statistics for the 12 four-hourly patient-controlled analgesia request
counts

Interval
Group 1 2 3 4 5 6 7 8 9 10 11 12

1 N9 9·3 5·5 5·4 5·1 7·6 5·3 3·9 3·7 4·6 4·9 3·5 3·4
s2 33·5 22·0 16·0 17·0 25·1 11·3 17·6 9·2 10·0 13·2 4·3 8·0

2 N9 10·2 6·5 7·9 9·3 9·6 7·4 6·6 5·7 4·9 6·3 6·3 5·9
s2 59·2 31·1 60·0 50·7 43·1 30·7 24·9 22·8 16·1 30·3 29·7 33·8

Correlated frailty
Shared frailty
GEE

1·0

0·8

0·6

0·4

0·2

0·0

C
or

re
la

tio
n

0 2 4 6 8 10
Lag

Fig. 1. Empirical (circles) and fitted correlation func-
tions for the patient-controlled analgesia count data;
, generalised estimating equation approach; dotted

lines, 95% simulation envelope.

using the composite loglikelihood of § 4, and for reference used standard likelihood
methods to fit a shared frailty model and a model that assumed between-interval indepen-
dence. The independent-frailty parameter estimates are identical to those obtained under
a negative binomial independence working assumption and so we also give robust standard
errors for this model, appropriate should independence be considered a working assump-
tion only. Estimates of mean parameters are similar under all models, though consistently
slightly higher when generalised estimating equations are used. Robust standard errors
are also similar where available, with standard information-based estimates under indepen-
dent and shared frailty estimates being slightly smaller. Note that the estimate of j is
substantially lower under the shared frailty model than the others. This is because with
shared frailty j influences both the between-patient heterogeneity and the within-patient
association, whereas under the other models there is more separation of these components.
The suggestion is that j is reduced under shared frailty as a consequence of less overall
within-patient association than would be anticipated given the heterogeneity. There is no
estimate of j when generalised estimating equations are used, as this method produces
instead an estimate of scale w as discussed earlier. A first-order autoregressive correlation
structure, corr (N

ij
, N
ik
)=n|j−k|, was assumed for the estimating equation method, and n

was estimated to be substantially smaller than the time-varying frailty parameter r.
Although not shown in Table 4, there are also differences between models in the esti-
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Table 4. Parameter estimates and standard errors, in parentheses, for patient-
controlled analgesia data under three Poisson-gamma frailty models and a gener-
alised estimating equation approach with autoregressive working correlation
matrix, elements corr (N

ij
, N
ik
)=n|j−k|. For the independent frailty model two

standard errors are given, information-based and robust

Frailty

Parameter Independent Shared Time-varying 

a1 2·10 (0·10, 0·10) 2·09 (0·10) 2·10 (0·10) 2·11 (0·10)
a2 1·61 (0·11, 0·13) 1·61 (0·10) 1·62 (0·13) 1·63 (0·13)
a3 1·71 (0·10, 0·12) 1·72 (0·10) 1·71 (0·12) 1·74 (0·12)
a4 1·78 (0·10, 0·11) 1·80 (0·10) 1·79 (0·11) 1·83 (0·11)
a5 1·96 (0·10, 0·11) 1·97 (0·10) 1·97 (0·10) 1·99 (0·10)
a6 1·66 (0·11, 0·10) 1·67 (0·10) 1·66 (0·10) 1·69 (0·10)

a7 1·47 (0·11, 0·14) 1·49 (0·11) 1·47 (0·13) 1·51 (0·13)
a8 1·37 (0·11, 0·12) 1·38 (0·11) 1·37 (0·12) 1·40 (0·12)
a9 1·38 (0·11, 0·11) 1·37 (0·11) 1·37 (0·11) 1·39 (0·11)
a10 1·55 (0·11, 0·11) 1·55 (0·11) 1·54 (0·11) 1·57 (0·11)
a11 1·40 (0·11, 0·10) 1·42 (0·11) 1·39 (0·10) 1·44 (0·10)
a12 1·35 (0·11, 0·12) 1·37 (0·11) 1·35 (0·12) 1·39 (0·12)

b 0·34 (0·06, 0·13) 0·33 (0·12) 0·34 (0·13) 0·30 (0·12)
j 0·49 (0·03, 0·05) 0·24 (0·04) 0·49 (0·06) w@=3·98 —
r 0 — 1 — 0·85 (0·03) n@=0·54 —

loglike −2191·8 −2249·2 −2159·5

, generalised estimating equation approach.
loglike, loglikelihood for independent and shared frailty models, composite loglikelihood for
time-varying frailty model.

mated correlations between parameter estimates. For example, under the independent
frailty model the estimated baseline intensities are close to being orthogonal, with corre-
lation between a1 and a2 for instance just 0·09. The robust estimate of the same quantity
is 0·71, under shared frailty it is 0·80, under time-varying frailty it is 0·70 and the generalised
estimating ·equation estimate is 0·70. Intuitively, under independence between periods
there is no reason for separate baseline parameters to be strongly correlated as the only
dependence arises through the shared covariate. When there is strong positive serial corre-
lation on the other hand, there is potential for consistent over- or underestimation of
baselines across periods which are close in time, and this is reflected in the correlation
structure. For a1 and a12 the corresponding estimates are 0·09, under the independent
frailty model, 0·33, robust, 0·78, shared, 0·30, time-varying, and 0·26 for the generalised
estimating equation approach. Note that with wider separation there is less correlation
between baselines under the models which allow the correlation in counts to decay with
time. Clearly these differences are important when considering the cumulative baseline for
total dose purposes or in comparing baselines in investigating the changing pattern
over time.

All models suggest the presence of unobserved heterogeneity, indicated by the frailty
variance estimates and their standard errors; note that no standard error for w or n is
provided by the generalised estimating equation software. Moreover, the increase in the
composite loglikelihood from the independent frailty to the time-varying frailty model,
and the decrease from this to the shared frailty model, suggest that the unobserved
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stochastic process which induces the extra-Poisson variation is unlikely to be either uncor-
related, r=0, or perfectly correlated, r=1, in time. This conclusion is supported by a
Monte Carlo test of H0 : r=1 performed using 1000 simulations which resulted in a
p-value of 0·001, and also by Fig. 1, which shows the empirical and the fitted autocorre-
lation curves, averaged over groups. The fitted time-varying frailty model certainly pro-
vides the best description for the correlation structure in the data. The empirical curve is
not only close to that fitted, it is almost entirely contained within 95% bootstrap reference
bands. The working correlation structure for the generalised estimating equation method
estimates the average lag-1 correlation well but seriously underestimates at higher
separation.

5·3. Comments

One of the original aims of the trial was to investigate whether patients in the two
regimes tended to take either similar total doses of morphine or make similar numbers
of requests for morphine. These hypotheses are equivalent to b= log 2 and b=0 respect-
ively, both of which would be rejected by formal significance tests under all approaches
considered. Patients in the 1 mg group made more requests on average than those in the
2 mg group, but not by the factor two needed to obtain the same total dose. A secondary
aim of the trial was to describe both within- and between-patient variability with a long-
term goal of setting patient-specific time-dependent maximum allowed doses, balancing
the requirement to reduce the risk of overdose with the need for patient analgesia. In this
context it is interesting to contrast predictions under each of the models given incomplete
sequences of observations. To illustrate we consider the mean and standard deviation of
the number of requests in intervals 3 and 12 given the observed numbers of requests in
intervals 1 and 2. We omit details of the calculations, which for the time-varying frailty
model are based on the pairwise distribution derived in § 3. Instead, in Table 5 we give
numerical values for three different combinations of N1 and N2 . Two examples are based
on data from patients in the 2 mg group, using the 10% and 90% points of N1+N2 as
selection criteria, namely patients 4 and 13, with (N1 , N2 )= (4, 1) and (23, 6) respectively.
We also consider prediction if the values for patient 13 had been reversed to (6, 23). Under
the marginal model there is no use of information in (N1 , N2 ) and the three illustrations
all have the same values. The difference between the interval 3 and interval 12 sections is
simply due to an overall lower mean towards the end of the follow-up period. Both frailty
models have smaller prediction standard deviations than the marginal model, this precision
being bought of course by the additional assumptions on the correlation structure. The
mean predictions under the frailty models are affected by (N1 , N2 ) in the obvious way,
and we note attenuation towards the marginal under the time-varying frailty model, as
expected. The two-interval totalN1+N2 is sufficient for prediction under the shared frailty
model and so we see the same results for the (23, 6) and (6, 23) illustrations, whereas
under the time-varying model the most recent observation has more influence.

6. D

A Laplace transform similar to (1) though allowing nonstandard marginals for Y was
used by Aalen (1987) to construct a nonnegative multivariate distribution for use in
mixing intensities of Markov chains. Extension to non-integer q was not considered so
that the marginals remained as x2, possibly noncentral, and inference was not considered.
For our model, estimation methods based on the computation of the full likelihood seem
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Table 5. Patient-controlled analgesia data. Illustration of conditional
mean and standard deviation, , of number of requests in intervals 3
and 12 given numbers in intervals 1 and 2 from 2 mg bolus patients,

for three diVerent models

N1=4, N1=23, N1=6,
N2=1 N2=6 N2=23

Interval Model Mean  Mean  Mean 

3 Marginal 5·52 4·52 5·52 4·52 5·52 4·52
Shared 2·97 1·72 10·73 3·28 10·73 3·28
Time-varying 2·86 1·68 8·77 2·91 12·93 3·55

12 Marginal 3·87 3·35 3·87 3·35 3·87 3·35
Shared 2·10 1·45 7·60 2·76 7·60 2·76
Time-varying 3·45 1·86 4·41 2·10 5·09 2·25

unmanageable but the alternative approach suggested in this work seems to work well.
For simplicity, we have chosen to base our estimation on all pairwise combinations
of time intervals for each individual. Thus, the probability elements used to construct our
estimating function, the composite likelihood, involve only bivariate contributions.

Our model extends the available random effects methodology for recurrent count data.
Other extensions to the standard shared-frailty approach for event time or count data
include a replacement of the gamma assumption with power variance function frailties
(Hougaard et al., 1997), a two-state switching model for intensities (Albert, 1991) and
additive frailty models (Petersen, 1998). The last-mentioned can lead to a compound
symmetry structure for the frailty correlation matrix, which can also be obtained directly
by replacing r|j−k| in (2) with r, as the resulting distribution remains proper. Additive
and direct distributions have the same marginal and association properties but not exactly
the same distributions, though differences are small except in the tails, as shown in J. C.
Chapman’s unpublished 2000 Ph.D. Thesis at Lancaster University.

Of course should interest lie only in the regression or other marginal parameters then
there may be no need to use our estimation procedure as a marginal generalised estimating
equation or independence working assumption analysis would provide consistent esti-
mators. This would lead to a simpler estimation procedure, though at the price of losing
assessment of dependence, goodness of fit or the possibility of prediction (Hougaard, 2000,
p. 420). Additionally, as pointed out by a referee, our method can accommodate missing
data and unbalanced time intervals. Arguments for and against marginal methods in
comparison with conditional or random effects methods are well known; see Diggle et al.
(1994) and Hougaard (2000) for précis in longitudinal and event time data respectively.

For this work we have concentrated on count data. In principle the time-varying gamma
frailty model may also be applicable for repeated event time data. Lawless et al. (2001)
discuss analysis methods for data of this type and criticise the standard assumption of
time-fixed random effects independent of covariates as often being untenable. Our model
allowing time-varying frailty overcomes part of this concern. There are further difficulties
in estimation however, especially with a semiparametric intensity model. This is under
investigation.

Fortran and R software for fitting the correlated gamma frailty model described in this
paper is available at www.maths.lancs.ac.uk/~henderr1/sercor.dir.
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